Electronic Code of Federal Regulations (e-CFR)

e-CFR Data is current as of February 5, 2007

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart Ec—Standards of Performance for Hospital/Medical/Infectious Waste Incinerators for Which Construction is Commenced After June 20, 1996

Source: 62 FR 48382, Sept. 15, 1997, unless otherwise noted.

§ 60.50c Applicability and delegation of authority.

(a) Except as provided in paragraphs (b) through (h) of this section, the affected facility to which this subpart applies is each individual hospital/medical/infectious waste incinerator (HMIWI) for which construction is commenced after June 20, 1996 or for which modification is commenced after March 16, 1998.

(b) A combustor is not subject to this subpart during periods when only pathological waste, low-level radioactive waste, and/or chemotherapeutic waste (all defined in §60.51c) is burned, provided the owner or operator of the combustor:

(1) Notifies the Administrator of an exemption claim; and

(2) Keeps records on a calendar quarter basis of the periods of time when only pathological waste, low-level radioactivewaste and/or chemotherapeutic waste is burned.

(c) Any co-fired combustor (defined in §60.51c) is not subject to this subpart if the owner or operator of the co-fired combustor:

(1) Notifies the Administrator of an exemption claim;

(2) Provides an estimate of the relative amounts of hospital waste, medical/infectious waste, and other fuels and wastes to be combusted; and

(3) Keeps records on a calendar quarter basis of the weight of hospital waste and medical/infectious waste combusted, and the weight of all other fuels and wastes combusted at the co-fired combustor.

(d) Any combustor required to have a permit under section 3005 of the Solid Waste Disposal Act is not subject to this subpart.

(e) Any combustor which meets the applicability requirements under subpart Cb, Ea, or Eb of this part (standards or guidelines for certain municipal waste combustors) is not subject to this subpart.

(f) Any pyrolysis unit (defined in §60.51c) is not subject to this subpart.

(g) Cement kilns firing hospital waste and/or medical/infectious waste are not subject to this subpart.

(h) Physical or operational changes made to an existing HMIWI solely for the purpose of complying with emission guidelines under subpart Ce are not considered a modification and do not result in an existing HMIWI becoming subject to this subpart.

(i) In delegating implementation and enforcement authority to a State under section 111(c) of the Clean Air Act, the following authorities shall be retained by the Administrator and not transferred to a State:

(1) The requirements of §60.56c(i) establishing operating parameters when using controls other than those listed in §60.56c(d).

(2) Alternative methods of demonstrating compliance under §60.8.

(j) Affected facilities subject to this subpart are not subject to the requirements of 40 CFR part 64.

(k) The requirements of this subpart shall become effective March 16, 1998

(I) Beginning September 15, 2000, or on the effective date of an EPA-approved operating permit program under Clean Air Act title V and the implementing regulations under 40 CFR part 70 in the State in which the unit is located, whichever date is later, affected facilities subject to this subpart shall operate pursuant to a permit issued under the EPA approved State operating permit program.

§ 60.51c Definitions.

Batch HMIWI means an HMIWI that is designed such that neither waste charging nor ash removal can occur during combustion.

Biologicals means preparations made from living organisms and their products, including vaccines, cultures, etc., intended for use in diagnosing, immunizing, or treating humans or animals or in research pertaining thereto.

Blood products means any product derived from human blood, including but not limited to blood plasma, platelets, red or white blood corpuscles, and other derived licensed products, such as interferon, etc.

Body fluids means liquid emanating or derived from humans and limited to blood; dialysate; amniotic, cerebrospinal, synovial, pleural, peritoneal and pericardial fluids; and semen and vaginal secretions.

Bypass stack means a device used for discharging combustion gases to avoid severe damage to the air pollution control device or other equipment.

Chemotherapeutic waste means waste material resulting from the production or use of antineoplastic agents used for the purpose of stopping or reversing the growth of malignant cells.

Co-fired combustor means a unit combusting hospital waste and/or medical/infectious waste with other fuels or wastes (e.g., coal, municipal solid waste) and subject to an enforceable requirement limiting the unit to combusting a fuel feed stream, 10 percent or less of the weight of which is comprised, in aggregate, of hospital waste and medical/infectious waste as measured on a calendar quarter basis. For purposes of this definition, pathological waste, chemotherapeutic waste, and low-level radioactive waste are considered "other" wastes when calculating the percentage of hospital waste and medical/infectious waste combusted.

Continuous emission monitoring system or *CEMS* means a monitoring system for continuously measuring and recording the emissions of a pollutant from an affected facility.

Continuous HMIWI means an HMIWI that is designed to allow waste charging and ash removal during combustion.

Dioxins/furans means the combined emissions of tetra-through octa-chlorinated dibenzo-para-dioxins and dibenzofurans, as measured by EPA Reference Method 23.

Dry scrubber means an add-on air pollution control system that injects dry alkaline sorbent (dry injection) or sprays an alkaline sorbent (spray dryer) to react with and neutralize acid gases in the HMIWI exhaust stream forming a dry powder material.

Fabric filter or *baghouse* means an add-on air pollution control system that removes particulate matter (PM) and nonvaporous metals emissions by passing flue gas through filter bags.

Facilities manager means the individual in charge of purchasing, maintaining, and operating the HMIWI or the owner's or operator's representative responsible for the management of the HMIWI. Alternative titles may include director of facilities or vice president of support services.

High-air phase means the stage of the batch operating cycle when the primary chamber reaches and maintains maximum operating temperatures.

Hospital means any facility which has an organized medical staff, maintains at least six inpatient beds, and where the primary function of the institution is to provide diagnostic and therapeutic patient services and continuous nursing care primarily to human inpatients who are not related and who stay on average in excess of 24 hours per admission. This definition does not include facilities maintained for the sole purpose of providing nursing or convalescent care to human patients who generally are not acutely ill but who require continuing medical supervision.

Hospital/medical/infectious waste incinerator or HMIWI or HMIWI unit means any device that combusts any amount of hospital waste and/or medical/infectious waste.

Hospital/medical/infectious waste incinerator operator or HMIWI operator means any person who operates, controls or supervises the day-to-day operation of an HMIWI.

Hospital waste means discards generated at a hospital, except unused items returned to the manufacturer. The definition of hospital waste does not include human corpses, remains, and anatomical parts that are intended for interment or cremation.

Infectious agent means any organism (such as a virus or bacteria) that is capable of being communicated by invasion and multiplication in body tissues and capable of causing disease or adverse health impacts in humans.

Intermittent HMIWI means an HMIWI that is designed to allow waste charging, but not ash removal, during combustion.

Large HMIWI means:

(1) Except as provided in (2);

(i) An HMIWI whose maximum design waste burning capacity is more than 500 pounds per hour; or

- (ii) A continuous or intermittent HMIWI whose maximum charge rate is more than 500 pounds per hour; or
- (iii) A batch HMIWI whose maximum charge rate is more than 4,000 pounds per day.
- (2) The following are not large HMIWI:

(i) A continuous or intermittent HMIWI whose maximum charge rate is less than or equal to 500 pounds per hour; or

(ii) A batch HMIWI whose maximum charge rate is less than or equal to 4,000 pounds per day.

Low-level radioactive waste means waste material which contains radioactive nuclides emitting primarily beta or gamma radiation, or both, in concentrations or quantities that exceed applicable federal or State standards for unrestricted release. Low-level radioactive waste is not high-level radioactive waste, spent nuclear fuel, or by-product material as defined by the Atomic Energy Act of 1954 (42 U.S.C. 2014(e)(2)).

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner. Failures that are caused, in part, by poor maintenance or careless operation are not malfunctions. During periods of malfunction the operator shall operate within established parameters as much as possible, and monitoring of all applicable operating parameters shall continue until all waste has been combusted or until the malfunction ceases, whichever comes first.

Maximum charge rate means:

(1) For continuous and intermittent HMIWI, 110 percent of the lowest 3-hour average charge rate measured during the most recent performance test demonstrating compliance with all applicable emission limits.

(2) For batch HMIWI, 110 percent of the lowest daily charge rate measured during the most recent performance test demonstrating compliance with all applicable emission limits.

Maximum design waste burning capacity means:

(1) For intermittent and continuous HMIWI,

C=Pv x 15,000/8,500

Where:

C=HMIWI capacity, lb/hr

Pv=primary chamber volume, ft ³

15,000=primary chamber heat release rate factor, Btu/ft ³ /hr

8,500=standard waste heating value, Btu/lb;

(2) For batch HMIWI,

 $C=P_{\vee} \times 4.5/8$

Where:

C=HMIWI capacity, lb/hr

P_V=primary chamber volume, ft ³

4.5=waste density, lb/ft 3

8=typical hours of operation of a batch HMIWI, hours.

Maximum fabric filter inlet temperature means 110 percent of the lowest 3-hour average temperature at the inlet to the fabric filter (taken, at a minimum, once every minute) measured during the most recent performance test demonstrating compliance with the dioxin/furan emission limit.

Maximum flue gas temperature means 110 percent of the lowest 3-hour average temperature at the outlet from the wet scrubber (taken, at a minimum, once every minute) measured during the most recent performance test demonstrating compliance with the mercury (Hg) emission limit.

Medical/infectious waste means any waste generated in the diagnosis, treatment, or immunization of human beings or animals, in research pertaining thereto, or in the production or testing of biologicals that is listed in paragraphs (1) through (7) of this definition. The definition of medical/infectious waste does not include hazardous waste identified or listed under the regulations in part 261 of this chapter; household waste, as defined in §261.4(b)(1) of this chapter; ash from incineration of medical/infectious waste, once the incineration process has been completed; human corpses, remains, and anatomical parts that are intended for interment mation; and domestic sewage materials identified in §261.4(a)(1) of this chapter.

(1) Cultures and stocks of infectious agents and associated biologicals, including: cultures from medical and pathological laboratories; cultures and stocks of infectious agents from research and industrial laboratories; wastes from the production of biologicals; discarded live and attenuated vaccines; and culture dishes and devices used to transfer, inoculate, and mix cultures.

(2) Human pathological waste, including tissues, organs, and body parts and body fluids that are removed during surgery or autopsy, or other medical procedures, and specimens of body fluids and their containers.

(3) Human blood and blood products including:

(i) Liquid waste human blood;

- (ii) Products of blood;
- (iii) Items saturated and/or dripping with human blood; or

(iv) Items that were saturated and/or dripping with human blood that are now caked with dried human blood; including serum, plasma, and other blood components, and their containers, which were used or intended for use in either patient care, testing and laboratory analysis or the development of pharmaceuticals. Intravenous bags are also include in this category.

(4) Sharps that have been used in animal or human patient care or treatment or in medical, research, or industrial laboratories, including hypodermic needles, syringes (with or without the attached needle), pasteur pipettes, scalpel blades, blood vials, needles with attached tubing, and culture dishes (regardless of presence of infectious agents). Also included are other types of broken or unbroken glassware that were in contact with infectious agents, such as used slides and cover slips.

(5) Animal waste including contaminated animal carcasses, body parts, and bedding of animals that were known to have been exposed to infectious agents during research (including research in veterinary hospitals), production of biologicals or testing of pharmaceuticals.

(6) Isolation wastes including biological waste and discarded materials contaminated with blood, excretions, exudates, or secretions from humans who are isolated to protect others from certain highly communicable diseases, or isolated animals known to be infected with highly communicable diseases.

(7) Unused sharps including the following unused, discarded sharps: hypodermic needles, suture needles, syringes, and scalpel blades.

Medium HMIWI means:

(1) Except as provided in paragraph (2);

(i) An HMIWI whose maximum design waste burning capacity is more than 200 pounds per hour but less than or equal to 500 pounds per hour; or

(ii) A continuous or intermittent HMIWI whose maximum charge rate is more than 200 pounds per hour but less than or equal to 500 pounds per hour; or

(iii) A batch HMIWI whose maximum charge rate is more than 1,600 pounds per day but less than or equal to 4,000 pounds per day.

(2) The following are not medium HMIWI:

(i) A continuous or intermittent HMIWI whose maximum charge rate is less than or equal to 200 pounds per hour or more than 500 pounds per hour; or

(ii) A batch HMIWI whose maximum charge rate is more than 4,000 pounds per day or less than or equal to 1,600 pounds per day.

Minimum dioxin/furan sorbent flow rate means 90 percent of the highest 3-hour average dioxin/furan sorbent flow rate (taken, at a minimum, once every hour) measured during the most recent performance test demonstrating compliance with the dioxin/furan emission limit.

Minimum Hg sorbent flow rate means 90 percent of the highest 3-hour average Hg sorbent flow rate (taken, at a minimum, once every hour) measured during the most recent performance test demonstrating compliance with the Hg emission limit.

Minimum hydrogen chloride (HCI) sorbent flow rate means 90 percent of the highest 3-hour average HCI sorbent flow rate (taken, at a minimum, once every hour) measured during the most recent performance test demonstrating compliance with the HCI emission limit.

Minimum horsepower or amperage means 90 percent of the highest 3-hour average horsepower or amperage to the wet scrubber (taken, at a minimum, once every minute) measured during the most recent performance test demonstrating compliance with the applicable emission limits.

Minimum pressure drop across the wet scrubber means 90 percent of the highest 3-hour average pressure drop across the wet scrubber PM control device (taken, at a minimum, once every minute) measured during the most recent performance test demonstrating compliance with the PM emission limit.

Minimum scrubber liquor flow rate means 90 percent of the highest 3-hour average liquor flow rate at the inlet to the wet scrubber (taken, at a minimum, once every minute) measured during the most recent performance test demonstrating compliance with all applicable emission limits.

Minimum scrubber liquor pH means 90 percent of the highest 3-hour average liquor pH at the inlet to the wet scrubber (taken, at a minimum, once every minute) measured during the most recent performance test demonstrating compliance with the HCI emission limit.

Minimum secondary chamber temperature means 90 percent of the highest 3-hour average secondary chamber temperature (taken, at a minimum, once every minute) measured during the most recent performance test demonstrating compliance with the PM, CO, or dioxin/furan emission limits.

Modification or *Modified HMIWI* means any change to an HMIWI unit after the effective date of these standards such that:

(1) The cumulative costs of the modifications, over the life of the unit, exceed 50 per centum of the original cost of the construction and installation of the unit (not including the cost of any land purchased in connection with such construction or installation) updated to current costs, or

(2) The change involves a physical change in or change in the method of operation of the unit which increases the amount of any air pollutant emitted by the unit for which standards have been established under section 129 or section 111.

Operating day means a 24-hour period between 12:00 midnight and the following midnight during which any amount of hospital waste or medical/infectious waste is combusted at any time in the HMIWI.

Operation means the period during which waste is combusted in the incinerator excluding periods of startup or shutdown.

Particulate matter or *PM* means the total particulate matter emitted from an HMIWI as measured by EPA Reference Method 5 or EPA Reference Method 29.

Pathological waste means waste material consisting of only human or animal remains, anatomical parts, and/or tissue, the bags/containers used to collect and transport the waste material, and animal bedding (if applicable).

Primary chamber means the chamber in an HMIWI that receives waste material, in which the waste is ignited, and from which ash is removed.

Pyrolysis means the endothermic gasification of hospital waste and/or medical/infectious waste using external energy.

Secondary chamber means a component of the HMIWI that receives combustion gases from the primary chamber and in which the combustion process is completed.

Shutdown means the period of time after all waste has been combusted in the primary chamber. For continuous HMIWI, shutdown shall commence no less than 2 hours after the last charge to the incinerator. For intermittent HMIWI, shutdown shall commence no less than 4 hours after the last charge to the incinerator. For batch HMIWI, shutdown shall commence no less than 5 hours after the high-air phase of combustion has been completed.

Small HMIWI means:

(1) Except as provided in (2);

(i) An HMIWI whose maximum design waste burning capacity is less than or equal to 200 pounds per hour; or

(ii) A continuous or intermittent HMIWI whose maximum charge rate is less than or equal to 200 pounds per hour; or

(iii) A batch HMIWI whose maximum charge rate is less than or equal to 1,600 pounds per day.

(2) The following are not small HMIWI:

(i) A continuous or intermittent HMIWI whose maximum charge rate is more than 200 pounds per hour;

(ii) A batch HMIWI whose maximum charge rate is more than 1,600 pounds per day.

Standard conditions means a temperature of 20 °C and a pressure of 101.3 kilopascals.

Startup means the period of time between the activation of the system and the first charge to the unit. For batch HMIWI, startup means the period of time between activation of the system and ignition of the waste.

Wet scrubber means an add-on air pollution control device that utilizes an alkaline scrubbing liquor to collect particulate matter (including nonvaporous metals and condensed organics) and/or to absorb and neutralize acid gases.

§ 60.52c Emission limits.

(a) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain stack emissions in excess of the limits presented in Table 1 of this subpart.

(b) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from the stack of that affected facility any gases that exhibit greater than 10 percent opacity (6-minute block average).

(c) On and after the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility utilizing a large HMIWI shall cause to be discharged into the atmosphere visible emissions of combustion ash from an ash conveying system (including conveyor transfer points) in excess of 5 percent of the observation period (i.e., 9 minutes per 3-hour period), as determined by EPA Reference Method 22, except as provided in paragraphs (d) and (e) of this section.

(d) The emission limit specified in paragraph (c) of this section does not cover visible emissions discharged inside buildings or enclosures of ash conveying systems; however, the emission limit does cover visible emissions discharged to the atmosphere from buildings or enclosures of ash conveying systems.

(e) The provisions specified in paragraph (c) of this section do not apply during maintenance and repair of ash conveying systems. Maintenance and/or repair shall not exceed 10 operating days per calendar quarter unless the owner or operator obtains written approval from the State agency establishing a date whereby all necessary maintenance and repairs of ash conveying systems shall be completed.

§ 60.53c Operator training and qualification requirements.

(a) No owner or operator of an affected facility shall allow the affected facility to operate at any time unless a fully trained and qualified HMIWI operator is accessible, either at the facility or available within 1 hour. The trained and qualified HMIWI operator may operate the HMIWI directly or be the direct supervisor of one or more HMIWI operators.

(b) Operator training and qualification shall be obtained through a State-approved program or by completing the requirements included in paragraphs (c) through (g) of this section.

(c) Training shall be obtained by completing an HMIWI operator training course that includes, at a minimum, the following provisions:

(1) 24 hours of training on the following subjects:

- (i) Environmental concerns, including pathogen destruction and types of emissions;
- (ii) Basic combustion principles, including products of combustion;

(iii) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures;

- (iv) Combustion controls and monitoring;
- (v) Operation of air pollution control equipment and factors affecting performance (if applicable);

(vi) Methods to monitor pollutants (continuous emission monitoring systems and monitoring of HMIWI and air pollution control device operating parameters) and equipment calibration procedures (where applicable);

(vii) Inspection and maintenance of the HMIWI, air pollution control devices, and continuous emission monitoring systems;

(viii) Actions to correct malfunctions or conditions that may lead to malfunction;

(ix) Bottom and fly ash characteristics and handling procedures;

(x) Applicable Federal, State, and local regulations;

(xi) Work safety procedures;

(xii) Pre-startup inspections; and

(xiii) Recordkeeping requirements.

(2) An examination designed and administered by the instructor.

(3) Reference material distributed to the attendees covering the course topics.

(d) Qualification shall be obtained by:

(1) Completion of a training course that satisfies the criteria under paragraph (c) of this section; and

(2) Either 6 months experience as an HMIWI operator, 6 months experience as a direct supervisor of an HMIWI operator, or completion of at least two burn cycles under the observation of two qualified HMIWI operators.

(e) Qualification is valid from the date on which the examination is passed or the completion of the required experience, whichever is later.

(f) To maintain qualification, the trained and qualified HMIWI operator shall complete and pass an annual review or refresher course of at least 4 hours covering, at a minimum, the following:

(1) Update of regulations;

(2) Incinerator operation, including startup and shutdown procedures;

- (3) Inspection and maintenance;
- (4) Responses to malfunctions or conditions that may lead to malfunction; and
- (5) Discussion of operating problems encountered by attendees.

(g) A lapsed qualification shall be renewed by one of the following methods:

(1) For a lapse of less than 3 years, the HMIWI operator shall complete and pass a standard annual refresher course described in paragraph (f) of this section.

(2) For a lapse of 3 years or more, the HMIWI operator shall complete and pass a training course with the minimum criteria described in paragraph (c) of this section.

(h) The owner or operator of an affected facility shall maintain documentation at the facility that address the following:

(1) Summary of the applicable standards under this subpart;

(2) Description of basic combustion theory applicable to an HMIWI;

(3) Procedures for receiving, handling, and charging waste;

(4) HMIWI startup, shutdown, and malfunction procedures;

(5) Procedures for maintaining proper combustion air supply levels;

(6) Procedures for operating the HMIWI and associated air pollution control systems within the standards established under this subpart;

(7) Procedures for responding to periodic malfunction or conditions that may lead to malfunction;

(8) Procedures for monitoring HMIWI emissions;

(9) Reporting and recordkeeping procedures; and

(10) Procedures for handling ash.

(i) The owner or operator of an affected facility shall establish a program for reviewing the information listed in paragraph (h) of this section annually with each HMIWI operator (defined in §60.51c).

(1) The initial review of the information listed in paragraph (h) of this section shall be conducted within 6 months after the effective date of this subpart or prior to assumption of responsibilities affecting HMIWI operation, whichever date is later.

(2) Subsequent reviews of the information listed in paragraph (h) of this section shall be conducted annually.

(j) The information listed in paragraph (h) of this section shall be kept in a readily accessible location for all HMIWI operators. This information, along with records of training shall be available for inspection by the EPA or its delegated enforcement agent upon request.

§ 60.54c Siting requirements.

(a) The owner or operator of an affected facility for which construction is commenced after September 15, 1997 shall prepare an analysis of the impacts of the affected facility. The analysis shall consider air pollution control alternatives that minimize, on a site-specific basis, to the maximum extent practicable, potential risks to public health or the environment. In considering such alternatives, the analysis may consider costs, energy impacts, non-air environmental impacts, or any other factors related to the practicability of the alternatives.

(b) Analyses of facility impacts prepared to comply with State, local, or other Federal regulatory requirements may be used to satisfy the requirements of this section, as long as they include the consideration of air pollution control alternatives specified in paragraph (a) of this section.

(c) The owner or operator of the affected facility shall complete and submit the siting requirements of this section as required under (0.58c(a)).

§ 60.55c Waste management plan.

The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. A waste management plan may include, but is not limited to, elements such as paper, cardboard, plastics, glass, battery, or metal recycling; or purchasing recycled or recyclable products. A waste management plan may include different goals or approaches for different areas or departments of the facility and need not include new waste management goals for every waste stream. It should identify, where possible, reasonably available additional waste management measures, taking into account the effectiveness of waste management measures already in place, the costs of additional measures, the emission reductions expected to be achieved, and any other environmental or energy impacts they might have. The American Hospital Association publication entitled "An Ounce of Prevention: Waste Reduction Strategies for Health Care Facilities" (incorporated by reference, see §60.17) shall be considered in the development of the waste management plan.

§ 60.56c Compliance and performance testing.

(a) The emission limits under this subpart apply at all times except during periods of startup, shutdown, or malfunction, provided that no hospital waste or medical/infectious waste is charged to the affected facility during startup, shutdown, or malfunction.

(b) The owner or operator of an affected facility shall conduct an initial performance test as required under §60.8 to determine compliance with the emission limits using the procedures and test methods listed in paragraphs (b)(1) through (b)(12) of this section. The use of the bypass stack during a performance test shall invalidate the performance test.

(1) All performance tests shall consist of a minimum of three test runs conducted under representative operating conditions.

(2) The minimum sample time shall be 1 hour per test run unless otherwise indicated.

(3) EPA Reference Method 1 of appendix A of this part shall be used to select the sampling location and number of traverse points.

(4) EPA Reference Method 3, 3A, or 3B of appendix A of this part shall be used for gas composition analysis, including measurement of oxygen concentration. EPA Reference Method 3, 3A, or 3B of appendix A of this part shall be used simultaneously with each reference method.

(5) The pollutant concentrations shall be adjusted to 7 percent oxygen using the following equation:

Cadj=Cmeas (20.9-7)/(20.9-%O₂)

where:

Cadj=pollutant concentration adjusted to 7 percent oxygen;

C_{meas}=pollutant concentration measured on a dry basis (20.9–7)=20.9 percent oxygen—7 percent oxygen (defined oxygen correction basis);

20.9=oxygen concentration in air, percent; and

%O₂=oxygen concentration measured on a dry basis, percent.

(6) EPA Reference Method 5 or 29 of appendix A of this part shall be used to measure the particulate matter emissions.

(7) EPA Reference Method 9 of appendix A of this part shall be used to measure stack opacity.

(8) EPA Reference Method 10 or 10B of appendix A of this part shall be used to measure the CO emissions.

(9) EPA Reference Method 23 of appendix A of this part shall be used to measure total dioxin/furan emissions. The minimum sample time shall be 4 hours per test run. If the affected facility has selected the toxic equivalency standards for dioxin/furans, under §60.52c, the following procedures shall be used to determine compliance:

(i) Measure the concentration of each dioxin/furan tetra-through octa-congener emitted using EPA Reference Method 23.

(ii) For each dioxin/furan congener measured in accordance with paragraph (b)(9)(i) of this section, multiply the congener concentration by its corresponding toxic equivalency factor specified in Table 2 of this subpart.

(iii) Sum the products calculated in accordance with paragraph (b)(9)(ii) of this section to obtain the total concentration of dioxins/furans emitted in terms of toxic equivalency.

(10) EPA Reference Method 26 or 26A of appendix A of this part shall be used to measure HCI emissions. If the affected facility has selected the percentage reduction standards for HCI under 60.52c, the percentage reduction in HCI emissions (%R_{HCI}) is computed using the following formula:

$$\left(\%R_{HCS}\right) = \left(\frac{E_i - E_o}{E_i}\right) \times 100$$

Where:

%R_{HCI}=percentage reduction of HCI emissions achieved;

 E_i =HCI emission concentration measured at the control device inlet, corrected to 7 percent oxygen (dry basis); and

E₀=HCl emission concentration measured at the control device outlet, corrected to 7 percent oxygen (dry basis).

(11) EPA Reference Method 29 of appendix A of this part shall be used to measure Pb, Cd, and Hg emissions. If the affected facility has selected the percentage reduction standards for metals under §60.52c, the percentage reduction in emissions (%R_{metal}) is computed using the following formula:

$$\left(\%R_{metal}\right) = \left(\frac{E_i - E_o}{E_i}\right) \times 100$$

Where:

%R_{metal}=percentage reduction of metal emission (Pb, Cd, or Hg) achieved;

 E_i =metal emission concentration (Pb, Cd, or Hg) measured at the control device inlet, corrected to 7 percent oxygen (dry basis); and

 E_0 =metal emission concentration (Pb, Cd, or Hg) measured at the control device outlet, corrected to 7 percent oxygen (dry basis).

(12) The EPA Reference Method 22 of appendix A of this part shall be used to determine compliance with the fugitive ash emission limit under §60.52c(c). The minimum observation time shall be a series of three 1-hour observations.

(c) Following the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, the owner or operator of an affected facility shall:

(1) Determine compliance with the opacity limit by conducting an annual performance test (no more than 12 months following the previous performance test) using the applicable procedures and test methods listed in paragraph (b) of this section.

(2) Determine compliance with the PM, CO, and HCI emission limits by conducting an annual performance test (no more than 12 months following the previous performance test) using the applicable procedures and test methods listed in paragraph (b) of this section. If all three performance tests over a 3-year period indicate compliance with the emission limit for a pollutant (PM, CO, or HCI), the owner or operator may forego a performance test for that pollutant for the subsequent 2 years. At a minimum, a performance test for PM, CO, and HCI shall be conducted every third year (no more than 36 months following the previous performance test). If a performance test conducted every third year indicates compliance with the emission limit for a pollutant (PM, CO, or HCI), the owner or operator may forego a performance test). If a performance test conducted every third year indicates compliance with the emission limit for a pollutant (PM, CO, or HCI), the owner or operator may forego a performance test). If a performance test conducted every third year indicates compliance with the emission limit for a pollutant (PM, CO, or HCI), the owner or operator may forego a performance test for that pollutant for an additional 2 years. If any performance test indicates noncompliance with the respective emission limit, a performance test for that pollutant shall be conducted annually until all annual performance tests over a 3-year period indicate compliance with the emission limit. The use of the bypass stack during a performance test shall invalidate the performance test.

(3) For large HMIWI, determine compliance with the visible emission limits for fugitive emissions from flyash/bottom ash storage and handling by conducting a performance test using EPA Reference Method 22 on an annual basis (no more than 12 months following the previous performance test).

(4) Facilities using a CEMS to demonstrate compliance with any of the emission limits under §60.52c shall:

(i) Determine compliance with the appropriate emission limit(s) using a 12-hour rolling average, calculated each hour as the average of the previous 12 operating hours (not including startup, shutdown, or malfunction).

(ii) Operate all CEMS in accordance with the applicable procedures under appendices B and F of this part.

(d) The owner or operator of an affected facility equipped with a dry scrubber followed by a fabric filter, a wet scrubber, or a dry scrubber followed by a fabric filter and wet scrubber shall:

(1) Establish the appropriate maximum and minimum operating parameters, indicated in Table 3 of this subpart for each control system, as site specific operating parameters during the initial performance test to determine compliance with the emission limits; and

(2) Following the date on which the initial performance test is completed or is required to be completed under §60.8, whichever date comes first, ensure that the affected facility does not operate above any of the applicable maximum operating parameters or below any of the applicable minimum operating parameters listed in Table 3 of this subpart and measured as 3-hour rolling averages (calculated each hour as the average of the previous 3 operating hours) at all times except during periods of startup, shutdown and malfunction. Operating parameter limits do not apply during performance tests. Operation above the established maximum or below the established minimum operating parameter(s) shall constitute a violation of established operating parameter(s).

(e) Except as provided in paragraph (h) of this section, for affected facilities equipped with a dry scrubber followed by a fabric filter:

(1) Operation of the affected facility above the maximum charge rate and below the minimum secondary chamber temperature (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the CO emission limit.

(2) Operation of the affected facility above the maximum fabric filter inlet temperature, above the maximum charge rate, and below the minimum dioxin/furan sorbent flow rate (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the dioxin/furan emission limit.

(3) Operation of the affected facility above the maximum charge rate and below the minimum HCl sorbent flow rate (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the HCl emission limit.

(4) Operation of the affected facility above the maximum charge rate and below the minimum Hg sorbent flow rate (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the Hg emission limit.

(5) Use of the bypass stack (except during startup, shutdown, or malfunction) shall constitute a violation of the PM, dioxin/furan, HCI, Pb, Cd and Hg emission limits.

(f) Except as provided in paragraph (h) of this section, for affected facilities equipped with a wet scrubber:

(1) Operation of the affected facility above the maximum charge rate and below the minimum pressure drop across the wet scrubber or below the minimum horsepower or amperage to the system (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the PM emission limit.

(2) Operation of the affected facility above the maximum charge rate and below the minimum secondary chamber temperature (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the CO emission limit.

(3) Operation of the affected facility above the maximum charge rate, below the minimum secondary chamber temperature, and below the minimum scrubber liquor flow rate (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the dioxin/furan emission limit.

(4) Operation of the affected facility above the maximum charge rate and below the minimum scrubber liquor pH (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the HCl emission limit.

(5) Operation of the affected facility above the maximum flue gas temperature and above the maximum charge rate (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the Hg emission limit.

(6) Use of the bypass stack (except during startup, shutdown, or malfunction) shall constitute a violation of the PM, dioxin/furan, HCI, Pb, Cd and Hg emission limits.

(g) Except as provided in paragraph (h) of this section, for affected facilities equipped with a dry scrubber followed by a fabric filter and a wet scrubber:

(1) Operation of the affected facility above the maximum charge rate and below the minimum secondary chamber temperature (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the CO emission limit.

(2) Operation of the affected facility above the maximum fabric filter inlet temperature, above the maximum charge rate, and below the minimum dioxin/furan sorbent flow rate (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the dioxin/furan emission limit.

(3) Operation of the affected facility above the maximum charge rate and below the minimum scrubber liquor pH (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the HCl emission limit.

(4) Operation of the affected facility above the maximum charge rate and below the minimum Hg sorbent flow rate (each measured on a 3-hour rolling average) simultaneously shall constitute a violation of the Hg emission limit.

(5) Use of the bypass stack (except during startup, shutdown, or malfunction) shall constitute a violation of the PM, dioxin/furan, HCI, Pb, Cd and Hg emission limits.

(h) The owner or operator of an affected facility may conduct a repeat performance test within 30 days of violation of applicable operating parameter(s) to demonstrate that the affected facility is not in violation of the applicable emission limit(s). Repeat performance tests conducted pursuant to this paragraph shall be conducted using the identical operating parameters that indicated a violation under paragraph (e), (f), or (g) of this section.

(i) The owner or operator of an affected facility using an air pollution control device other than a dry scrubber followed by a fabric filter, a wet scrubber, or a dry scrubber followed by a fabric filter and a wet scrubber to comply with the emission limits under §60.52c shall petition the Administrator for other site-specific operating parameters to be established during the initial performance test and continuously monitored thereafter. The owner or operator shall not conduct the initial performance test until after the petition has been approved by the Administrator.

(j) The owner or operator of an affected facility may conduct a repeat performance test at any time to establish new values for the operating parameters. The Administrator may request a repeat performance test at any time.

[62 FR 48382, Sept. 15, 1997, as amended at 65 FR 61753, Oct. 17, 2000]

§ 60.57c Monitoring requirements.

(a) The owner or operator of an affected facility shall install, calibrate (to manufacturers' specifications), maintain, and operate devices (or establish methods) for monitoring the applicable maximum and minimum operating parameters listed in Table 3 of this subpart such that these devices (or methods) measure and record values for these operating parameters at the frequencies indicated in Table 3 of this subpart at all times except during periods of startup and shutdown.

(b) The owner or operator of an affected facility shall install, calibrate (to manufacturers' specifications), maintain, and operate a device or method for measuring the use of the bypass stack including date, time, and duration.

(c) The owner or operator of an affected facility using something other than a dry scrubber followed by a fabric filter, a wet scrubber, or a dry scrubber followed by a fabric filter and a wet scrubber to comply with the emission limits under §60.52c shall install, calibrate (to the manufacturers' specifications), maintain, and operate the equipment necessary to monitor the site-specific operating parameters developed pursuant to §60.56c(i).

(d) The owner or operator of an affected facility shall obtain monitoring data at all times during HMIWI operation except during periods of monitoring equipment malfunction, calibration, or repair. At a minimum, valid monitoring data shall be obtained for 75 percent of the operating hours per day and for 90 percent of the operating days per calendar quarter that the affected facility is combusting hospital waste and/or medical/infectious waste.

§ 60.58c Reporting and recordkeeping requirements.

(a) The owner or operator of an affected facility shall submit notifications, as provided by §60.7. In addition, the owner or operator shall submit the following information:

- (1) Prior to commencement of construction;
- (i) A statement of intent to construct;
- (ii) The anticipated date of commencement of construction; and
- (iii) All documentation produced as a result of the siting requirements of §60.54c.
- (2) Prior to initial startup;
- (i) The type(s) of waste to be combusted;
- (ii) The maximum design waste burning capacity;
- (iii) The anticipated maximum charge rate; and
- (iv) If applicable, the petition for site-specific operating parameters under §60.56c(i).

(b) The owner or operator of an affected facility shall maintain the following information (as applicable) for a period of at least 5 years:

- (1) Calendar date of each record;
- (2) Records of the following data:

(i) Concentrations of any pollutant listed in §60.52c or measurements of opacity as determined by the continuous emission monitoring system (if applicable);

- (ii) Results of fugitive emissions (by EPA Reference Method 22) tests, if applicable;
- (iii) HMIWI charge dates, times, and weights and hourly charge rates;
- (iv) Fabric filter inlet temperatures during each minute of operation, as applicable;
- (v) Amount and type of dioxin/furan sorbent used during each hour of operation, as applicable;
- (vi) Amount and type of Hg sorbent used during each hour of operation, as applicable;
- (vii) Amount and type of HCI sorbent used during each hour of operation, as applicable;
- (viii) Secondary chamber temperatures recorded during each minute of operation;
- (ix) Liquor flow rate to the wet scrubber inlet during each minute of operation, as applicable;
- (x) Horsepower or amperage to the wet scrubber during each minute of operation, as applicable;
- (xi) Pressure drop across the wet scrubber system during each minute of operation, as applicable,
- (xii) Temperature at the outlet from the wet scrubber during each minute of operation, as applicable;

(xiii) pH at the inlet to the wet scrubber during each minute of operation, as applicable,

(xiv) Records indicating use of the bypass stack, including dates, times, and durations, and

(xv) For affected facilities complying with §§60.56c(i) and 60.57c(c), the owner or operator shall maintain all operating parameter data collected.

(3) Identification of calendar days for which data on emission rates or operating parameters specified under paragraph (b)(2) of this section have not been obtained, with an identification of the emission rates or operating parameters not measured, reasons for not obtaining the data, and a description of corrective actions taken.

(4) Identification of calendar days, times and durations of malfunctions, a description of the malfunction and the corrective action taken.

(5) Identification of calendar days for which data on emission rates or operating parameters specified under paragraph (b)(2) of this section exceeded the applicable limits, with a description of the exceedances, reasons for such exceedances, and a description of corrective actions taken.

(6) The results of the initial, annual, and any subsequent performance tests conducted to determine compliance with the emission limits and/or to establish operating parameters, as applicable.

(7) All documentation produced as a result of the siting requirements of §60.54c;

(8) Records showing the names of HMIWI operators who have completed review of the information in §60.53c(h) as required by §60.53c(i), including the date of the initial review and all subsequent annual reviews;

(9) Records showing the names of the HMIWI operators who have completed the operator training requirements, including documentation of training and the dates of the training;

(10) Records showing the names of the HMIWI operators who have met the criteria for qualification under §60.53c and the dates of their qualification; and

(11) Records of calibration of any monitoring devices as required under §60.57c (a), (b), and (c).

(c) The owner or operator of an affected facility shall submit the information specified in paragraphs (c)(1) through (c)(3) of this section no later than 60 days following the initial performance test. All reports shall be signed by the facilities manager.

(1) The initial performance test data as recorded under §60.56c (b)(1) through (b)(12), as applicable.

(2) The values for the site-specific operating parameters established pursuant to §60.56c (d) or (i), as applicable.

(3) The waste management plan as specified in §60.55c.

(d) An annual report shall be submitted 1 year following the submission of the information in paragraph (c) of this section and subsequent reports shall be submitted no more than 12 months following the previous report (once the unit is subject to permitting requirements under Title V of the Clean Air Act, the owner or operator of an affected facility must submit these reports semiannually). The annual report shall include the information specified in paragraphs (d)(1) through (d)(8) of this section. All reports shall be signed by the facilities manager.

(1) The values for the site-specific operating parameters established pursuant to §60.56c (d) or (i), as applicable.

(2) The highest maximum operating parameter and the lowest minimum operating parameter, as applicable, for each operating parameter recorded for the calendar year being reported, pursuant to §60.56c(d) or (i), as applicable.

(3) The highest maximum operating parameter and the lowest minimum operating parameter, as applicable for each operating parameter recorded pursuant to §60.56c (d) or (i) for the calendar year preceding the year being reported, in order to provide the Administrator with a summary of the performance of the affected facility over a 2-year period.

(4) Any information recorded under paragraphs (b)(3) through (b)(5) of this section for the calendar year being reported.

(5) Any information recorded under paragraphs (b)(3) through (b)(5) of this section for the calendar year preceding the year being reported, in order to provide the Administrator with a summary of the performance of the affected facility over a 2-year period.

(6) If a performance test was conducted during the reporting period, the results of that test.

(7) If no exceedances or malfunctions were reported under paragraphs (b)(3) through (b)(5) of this section for the calendar year being reported, a statement that no exceedances occurred during the reporting period.

(8) Any use of the bypass stack, the duration, reason for malfunction, and corrective action taken.

(e) The owner or operator of an affected facility shall submit semiannual reports containing any information recorded under paragraphs (b)(3) through (b)(5) of this section no later than 60 days following the reporting period. The first semiannual reporting period ends 6 months following the submission of information in paragraph (c) of this section. Subsequent reports shall be submitted no later than 6 calendar months following the previous report. All reports shall be signed by the facilities manager.

(f) All records specified under paragraph (b) of this section shall be maintained onsite in either paper copy or computer-readable format, unless an alternative format is approved by the Administrator.

Pollutant	Units (7% oxygen, dry basis)	Emission Limits			
		Small	HMIWI size Medium	Large	
	Milligrams per dry	Jildii	Medium	Large	
Particulate matter	standard cubic meter (grains per dry standard cubic foot).	69 (0.03)	34 (0.015)	34 (0.015)	
Carbon monoxide	Parts per million by volume	40	40	40	

Table 1 to Subpart Ec of Part 60-Emission Limits for Small, Medium, and Large HMIWI

Dioxins/furans	Nanograms per dry standard cubic meter total dioxins/furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter total dioxins/furans TEQ (grains per billion dry standard cubic feet).	125 (55) or 2.3 (1.0)	25 (11) or 0.6 (0.26)	25 (11) or 0.6 (0.26)
Hydrogen chloride	Parts per million or percent reduction.	15 or 99%	15 or 99%	15 or 99%
Sulfur dioxide	Parts per million by volume.	55	55	55
Nitrogen oxides	Parts per million by volume.	250	250	250
Lead	Milligrams per dry standard cubic meter (grains per thousand dry standard cubic feet) or percent reduction.	1.2 (0.52) or 70%	0.07 (0.03) or 98%	0.07 (0.03) or 98%
Cadmium	Milligrams per dry standard cubic meter (grains per thousand dry standard cubic feet) or percent reduction.	0.16 (0.07) or 65%	0.04 (0.02) or 90%	0.04 (0.02) or 90%
Mercury	Milligrams per dry standard cubic meter (grains per thousand dry standard cubic feet) or percent reduction.	0.55 (0.24) or 85%	0.55 (0.24) or 85%	0.55 (0.24) or 85%

Table 2 of Subpart Ec to Part 60—Toxic Equivalency Factors

Dioxin/furan congener	Toxic equivalency factor
2,3,7,8-tetrachlorinated dibenzo-p-dioxin	1
1,2,3,7,8-pentachlorinated dibenzo-p-dioxin	0.5
1,2,3,4,7,8-hexachlorinated dibenzo-p-dioxin	0.1
1,2,3,7,8,9-hexachlorinated dibenzo-p-dioxin	0.1
1,2,3,6,7,8-hexachlorinated dibenzo-p-dioxin	0.1
1,2,3,4,6,7,8-heptachlorinated dibenzo-p-dioxin	0.01
octachlorinated dibenzo-p-dioxin	0.001
2,3,7,8-tetrachlorinated dibenzofuran	0.1
2,3,4,7,8-pentachlorinated dibenzofuran	0.5
1,2,3,7,8-pentachlorinated dibenzofuran	0.05
1,2,3,4,7,8-hexachlorinated dibenzofuran	0.1
1,2,3,6,7,8-hexachlorinated dibenzofuran	0.1
1,2,3,7,8,9-hexachlorinated dibenzofuran	0.1
2,3,4,6,7,8-hexachlorinated dibenzofuran	0.1
1,2,3,4,6,7,8-heptachlorinated dibenzofuran	0.01
1,2,3,4,7,8,9-heptachlorinated dibenzofuran	0.01
Octachlorinated dibenzofuran	0.001

 Table 3 to Subpart Ec of Part 60—Operating Parameters To Be Monitored and Minimum

 Measurement and Recording Frequencies

	Minimum frequency				
Operating parameters to be monitored	Data measurement	Data recording	Dry scrubber followed by fabric filter	Wet scrubber	Dry scrubber followed by fabric filter and wet scrubber
Maximum operating parameters:					
Maximum charge rate	Continuous	1xhour	[bcheck]	[bcheck]	[bcheck]
Maximum fabric filter inlet temperature	Continuous	lxminute	[bcheck]		[bcheck]
Maximum flue gas temperature	Continuous	lxminute	[bcheck]	[bcheck]	
Minimum operating parameters:					
Minimum secondary chamber temperature	Continuous	lxminute	[bcheck]	[bcheck]	[bcheck]
Minimum dioxin/furan sorbent flow rate	Hourly	1xhour	[bcheck]		[bcheck]
Minimum HCI sorbent flow rate	Hourly	1xhour	[bcheck]		[bcheck]
Minimum mercury (Hg) sorbent flow rate	Hourly	1xhour	[bcheck]		[bcheck]
Minimum pressure drop across the wet scrubber or minimum horsepower or amperage to wet scrubber	Continuous	lxminute		[bcheck]	[bcheck]
Minimum scrubber liquor flow rate	Continuous	lxminute		[bcheck]	[bcheck]
Minimum scrubber liquor pH	Continuous	lxminute		[bcheck]	[bcheck]