Facility Name:	Premium West Construction (Kaya Apartments)
Equipment Type:	[34H] California Certified Emergency Engine
Application #:	APCD2024-APP-008382
ID#:	APCD2024-SITE-04614
Equipment/Facility Address:	2710 3 rd Ave. San Diego, CA 92103
Facility Contact:	Steve Stinebaugh (Facility Contact/App Preparer) (619) 405-0374 s.stinebaugh@premiumwestinc.com

9/26/2024

X Austin Stein

Austin Stein Jr. Air Pollution Control Engineer Signed by: AustinC.Stein@sdcounty.ca.gov

Permit Engineer:

Х

Nicholas Horres Senior Air Pollution Control Engineer

Senior Engineer Signature:

1.0 Background

- 1.1 Type of Application: New application for an emergency natural gas engine
- **1.2 Permit History:** This is the initial application for this equipment.
- **1.3 Facility Description:** This is a residential mid-rise apartment building. This facility does not have any active permits with APCD. No other applications are open at this site.
- **1.4 Other Background Info:** There are no hearing board actions, permit denials, legal settlements, NOV, or nuisance complaints. The site is not a Title V facility.

2.0 Process Description

2.1 Equipment Description.

Emergency Natural Gas Engine Generator Manufacturer: Kohler; Model: KG6208THD; S/N: TBD; Horsepower (maximum rated): 204; Model Year: 2023; Certified with a 3-way (NSCR) catalyst; Engine Family (EPA): PKHXB06.2HNL; Driving a 125-kW emergency-use standby generator; 3.5-inch vertical exhaust with flapper type raincap, exhausting 81 ft. above ground.

2.2 Process Description.

This is a natural gas-powered engine to be used in situations of emergency and for limited operations for maintenance and testing purposes for the Premium West Construction (Kaya Apartments) operation.

2.3 Emissions Controls.

This is an EPA certified natural gas engine. It is certified with a 3-way catalyst.

2.4 Attachments.

Generator specification sheet.

3.0 Emissions

3.1 Emissions estimate summary. Estimated emissions from the process are shown below.

	Emission Factor	Hourly Emissions	Daily Emissions	Annual	Emissions
Compound	g/bhp-hr	lbs/hr	lbs/day	tons/year	lbs/yr
NOx	0.01	0.003	0.08	0.00009	0.17
СО	0.26	0.12	2.82	0.003	6.11
NMHC	0.01	0.003	0.08	0.00009	0.17
PM	N/A	0.03	0.80	0.0009	1.73
SOx	N/A	0.00	0.02	0.00003	0.05

 Table 1: Estimated PTE for criteria pollutants

3.2 Estimated Emissions Assumptions

- Table 1 evaluates the emission unit at 24 hours per day and a total of 52 hours per year, assuming full load operations
- Estimated emissions are calculated for maintenance and testing operations. Emergency use is not counted towards operation limits.
- EPA certified emissions for NOx, CO, VOC; San Diego APCD Method E19 (Engines, Natural Gas Fired, Rich Burn, with Non-Selective Catalytic Reduction) emission factors for PM, SOx and toxic air contaminants.
- Expected actual emissions same as PTE.

• Other standard assumptions as stated in calculation sheets

3.3 Emissions Calculations.

Calculations were performed using the attached spreadsheets using standard calculation methods.

3.4 Attachments.

Emission Calculations.

4.0 Applicable Rules

4.1 District Prohibitory Rules

Emergency engines at non-major sources are subject to the following District prohibitory rules: 50, 51, 53, 62 and 69.4.1. The proposed engine is expected to comply with all applicable requirements as shown in the table on the following page with standard permit conditions for this equipment type.

	Table 2: Prohibitory Rule Discussion			
Applicable Section	Requirement	Engine Complies?	Explanation	Condition
	Visible Emissions not to exceed 20% opacity or Ringelmann 1 for more than 3 minutes in a 60		Compliance with this requirement is achieved through the use of an EPA certified engine, and permit conditions will specify this	
Rule 50	minute period	Yes	requirement.	C28413
			Due to the intermittent operation of an emergency engine that meets all emission requirements, it is anticipated that this will not cause a public nuisance. Permit conditions	
Rule 51	Cannot cause or contribute to a public nuisance	Yes	will prohibit this engine from causing a public nuisance.	C28414
Kule 51	Emissions of sulfur compounds calculated as SO2 on a dry basis shall not exceed 0.05 % by volume	105	Permit conditions will require use of natural gas with a maximum sulfur content of 10 grains per 100 dscf which will ensure	
Rule 53(d)(1)	on a dry basis.	Yes	compliance with this requirement.	C28587
Rule 53(d)(2)	Emissions of combustion particulates shall not exceed 0.10 grains per dry standard cubic foot (0.23 grams per dry standard cubic meter) of gas which is standardized to 12 percent of carbon dioxide (CO2) by volume.	Yes	Particulate emission from this engine is calculated at 0.004 grains per dry scft gas at 12% CO2, therefore complies with this requirement.	NA
Rule 62	Sulfur content of liquid fuel shall not exceed 0.5 % sulfur by weight.	Yes	Permit conditions will require use of natural gas with a maximum sulfur content of 10 grains per 100 dscf which will ensure compliance with this requirement.	C28587
Rule 69.4.1				
69.4.1(d)(1)(ii)(E)	Requires new or replacement emergency standby engines to meet the following emission standards: (<u>Rich-burn engines using gaseous</u>	Yes	This engine is rich burn engine using gaseous fuel. The engine complies with these emission standards with 0.5 ppmv NOx, 26.3 ppmv CO, 1.3 ppmv VOC at 15% oxygen.	

	<u>fuel</u>) NOx: 25 ppmv; VOC: 86 ppmv; CO: 540 ppmw			
	Requires an owner or operator of an engine without add-on control equipment, except engines specified in Subsections (b)(3) or (b)(4), to monitor the operating parameters recommended by the engine manufacturer and any additional operating parameters identified by the Air Pollution Control Officer. Such operating parameters may include, but are not limited to: (i) engine air-to-fuel ratio; (ii) engine inlet manifold temperature and pressure;			
	and (iii) oxygen content of the exhaust	27/1	This engine has a manufacturer installed 3-way catalyst as the add-on control device, therefore	
<u>69.4.1(e)(1)</u>	gas. Requires an owner or operator of an engine with add-on control equipment, except engines specified in Subsections (b)(3) or (b)(4), to install, operate and maintain in calibration, devices that continuously monitor the operational characteristics of the engine and any NOx emission reduction system as determined necessary to ensure compliance by the Air Pollution Control Officer. Such operational characteristics	N/A	(e)(2) applies instead of (e)(1). This engine has manufacturer installed three- way catalyst and is certified with this three- way catalyst as the add-on control device,	N/A
69.4.1(e)(2)	shall include, but are not limited to:	Yes	therefore, the engine is exempt from this requirement as emergency engine per (b)(5).	N/A

	(i) engine air-to-fuel ratio;			
	(ii) temperature of exhaust gas at			
	the inlet and outlet of the add-on			
	control equipment;			
	(iii) oxygen content of exhaust gas			
	at the inlet and outlet of the add-on			
	control equipment; or			
	<i>(iv) flow rate of NOx</i>			
	reducing agent added to			
	the engine exhaust gas.			
	All engines must be equipped with			
	a non-resettable totalizing fuel or			
	hour meter which shall be replaced		Permit conditions will require installation of a	
	in accordance with subsection		non-resettable hour meter and specify the	
69.4.1(e)(3)	(g)(7) of this rule.	Yes	requirements for replacement.	C43938
	Requires an owner or operator of a			
	new or replacement non-			
	emergency gaseous-fueled engine			
	rated at 1,000 bhp or greater and			
	permitted to operate more than			
	2,000 hours per calendar year to			
	install, operate, and maintain a			
	Continuous Emissions Monitoring		This is an emergency engine, therefore is not	
69.4.1(e)(4)	System (CEMS) for NOx and CO.	N/A	subject to this requirement.	N/A
•>••••(•)(•)	Rule $69.4.1(e)(5)$ requires an	1011		1
	owner or operator of a non-			
	emergency gaseous-fueled engine,			
	except engines specified in			
	Subsections (b)(3)(ii), (b)(4)(ii) or			
	(e)(4), to have a trained operator			
	use a portable analyzer to take		This is an emergency engine, therefore is not	
69.4.1(e)(5)	NOx and CO emission readings.	N/A	subject to this requirement.	N/A
07. 4 .1(C)(S)		1 V / <i>L</i> 1		11/11
	Requires an owner or operator of an engine subject to this rule,			
	U J		This is an amongonary anging therefore is not	
(0 / 1(0(1)	except engines specified in Subsections $(h)(2)$ $(h)(4)$ $(x)(4)$ or	NT/A	This is an emergency engine, therefore is not subject to this requirement a $a_{1}(h)(d)$	
69.4.1(f)(1)	Subsections (b)(3), (b)(4), (e)(4) or	N/A	subject to this requirement per (b)(4)	N/A

	(e)(5), to conduct periodic			
	inspections of the engine and any			
	add-on control equipment, as			
	applicable, to ensure that the			
	engine and control equipment is			
	operated in compliance with the			
	provisions of this rule. Inspections			
	shall be conducted at least once			
	every 4,000 hours of operation, or			
	every six months, whichever is			
	less.			
	The owner or operator must			
	conduct periodic maintenance on			
	the engine, according to			
	engine/control equipment			
	manufacturer's instructions or		Annual maintenance of engine according to	
	other written procedure, at least		written procedure will be required by permit	
69.4.1(f)(2)	once each calendar year.	Yes	conditions.	C45281
			Manufacturer and model number, brake	0.0201
			horsepower rating, combustion method and	
			fuel type are contained in the permit	
			application. Manual of recommended	
	Specifies engine information that		maintenance will be specified in permit	
69.4.1(g)(1)	must be maintained on-site.	Yes	conditions.	C43937
07.4.1(g)(1)	Requires keeping an operating log	105		C+3737
	containing dates and times and			
	purpose of each period of engine			
	operation, cumulative operation of			
	engine for each calendar year and			
	maintenance records including			
	dates maintenance is performed.			
	Engines within 500 feet of schools			
	must record the time of day when		Compliance with this provision is expected and	
	the engine is operated for testing		this requirement is specified in permit	
60.4.1(a)(2)	and maintenance. Specific records	Yes	conditions.	C45288
69.4.1(g)(2)	and maintenance. Specific fecords	108	conditions.	043200

	for internal, external, and partial			
	external power outages is required.			
			This is an encourse on since and encourt from	
$60 \ 1 \ (a)(3 \ 5)$		N/A	This is an emergency engine and exempt from these requirements per 69.4.1(b)(4)	N/A
69.4.1(g)(3-5)	Requires records of the dates and	IN/A	these requirements per 09.4.1(0)(4)	IN/A
	times when fuel is being			
	combusted and cumulative		The applicant has claimed a commissioning	
	operating time if claiming a		period is needed but has not claimed a	
69.4.1(g)(6)	commissioning exemption.	NA	commissioning exemption.	NA
0/1 m (g)(0)		1 1/2 1		1112
	Requires notification to APCD		Compliance with this provision is expected and	
	within 10 calendar days of		this requirement is specified in permit	
69.4.1(g)(7)	replacing an hour meter.	Yes	conditions.	C43938
	Requires an owner or operator of			
	an engine subject to the			
	requirements of Subsection			
	(e)(5) [portable analyzer			
(0, 1, 1)	requirements] to comply with		This is an emergency engine, therefore is not	
69.4.1(g)(8)	specified recordkeeping.	N/A	subject to this requirement.	N/A
	Requires specified records to be maintained on-site for at least		Compliance with this accession is seen to 1 1	
			Compliance with this provision is expected and this requirement is empirical in permit	
60.4.1(a)(0)	three years and made available to the District upon request.	Yes	this requirement is specified in permit conditions.	C43941
69.4.1(g)(9)	Requires all records required by	105		043741
	Subsection $(g)(8)$ to be retained in			
	electronic and/or hardcopy format			
	on-site, or off-site in a central			
	location, for at least three years			
	and made available to the District		This is an emergency engine, therefore is not	
69.4.1(g)(10)	upon request.	N/A	subject to this requirement.	N/A

69.4	4.1(h)	Specifies test methods for engines subject to testing.	N/A	This emergency engine is not subject to testing per Subsection $(b)(4)(i)$.	N/A
		Requires periodic source testing to confirm compliance with		This subsection does not apply to certified	
69.4	4.1(i)(1)	applicable emission standards.	NA	emergency engines.	NA

ENGINEERING EVALUATION ATTACHMENTS

4.2 New Source Review (NSR) Rule 20.1-20.4

This application is subject to District NSR rules. At the time of filing, this facility is not considered a major stationary source, for each pollutant, as shown in the following table, and is therefore subject to District Rule 20.2. Calculation of emissions and determination of applicable requirements is performed in accordance with District Rule(s) 20.1 through 20.3.

	NOx	VOC	PM-10	PM-2.5	SOx	CO	Lead
Major Source Threshold (ton/year)	50	50	100	100	100	100	100
Major Source? (yes/no)	No	No	No	No	No	No	No
Major Modification Threshold (ton/year)	25	25	15	10	40	100	0.6
Major Modification at a Major Source?	No	No	No	No	No	No	No
Contemporaneous Calculations Performed?	No	No	No	No	No	No	No
Federal Major Stationary Source Threshold (ton/year)							
(Severe non-attainment status)	25	25	100	100	100	100	100
Federal Major Stationary Source?	No	No	No	No	No	No	No
Federal Major Modification Threshold (ton/year)							
(Severe non-attainment status)	25	25	15	10	40	100	0.6
Federal Major Modification?	No	No	No	No	No	No	No
Contemporaneous Net Calculations Performed	No	No	No	No	No	No	No
PSD Threshold (ton/year)	250	250	250		250	250	
PSD Modification Threshold (ton/year)	40	40	15		40	100	0.6
PSD New or Modification?	No	No	No	No	No	No	No

Table 3: Classification of Major/PSD Source and Modification New Source Review (NSR) Requirements

District Rule 20.2 contains requirements for Best Available Control Technology (BACT), Air Quality Impact Assessment (AQIA), Prevention of Significant Deterioration (PSD) and public notification. No requirements of this rule apply; as shown in the table on the following page and sections 20.2(d)(1-2).

	Table 4: New Source Review Discussion			
Rule/Requirement	Requirement	Applicability	Discussion	Condition
	Rule 20.2 applies to		This is a non-major	
	non-major		stationary source, so Rule	
Applicability	stationary sources	Yes	20.2 applies.	NA
Type of				
application	New	Yes	NA	NA
	No exemptions			
	apply to this			
Exemptions	equipment	NA	NA	NA
20.2(d)(1) – BACT				
			The potential to emit for	
	Installation of		this pollutant is 0.08	
	BACT is required if	Not	lbs/day, which does not	
	emissions of NOx	triggered, no	exceed this trigger level,	
BACT - NOx	exceed 10 lbs/day	permit limit	so BACT is not required.	NA
		-	The potential to emit for	
	Installation of		this pollutant is 0.08	
	BACT is required if	Not	lbs/day, which does not	
	emissions of VOC	triggered, no	exceed this trigger level,	
BACT - VOC	exceed 10 lbs/day	permit limit	so BACT is not required.	NA
biter voe	execced 10 105/ day	permit mint	The potential to emit for	1111
	T (11 (C		this pollutant is 0.8	
	Installation of	Not	lbs/day, which does not	
	BACT is required if emissions of PM-10	triggered, no	exceed this trigger level,	
DACT DM 10		permit limit	so BACT is not required.	NA
BACT - PM-10	exceed 10 lbs/day	permit minit		INA
			The potential to emit for	
	Installation of	Not	this pollutant is 0.02	
	BACT is required if		lbs/day, which does not	
	emissions of SOx	triggered, no	exceed this trigger level,	274
BACT - SOx	exceed 10 lbs/day	permit limit	so BACT is not required.	NA
20.2(d)(2) – AQIA				1
	Required for			
	project emission		The increase in emissions	
	increases in excess		of this air contaminant	
	of 25 lbs/hr, 250		from this project does not	
	lbs/day or 40 ton/yr		exceed any of these	
	of NOx calculated		levels, so no AQIA is	
AQIA - NOx	as NO2	Not Triggered	required.	NA
	D 10		The increase in emissions	
	Required for		of this air contaminant	
	project emission		from this project does not	
	increases in excess		exceed any of these	
	of 100 lbs/day or 15		levels, so no AQIA is	
AQIA - PM-10	ton/yr of PM-10	Not Triggered	required.	NA
	Required for		The increase in emissions	
	project emission		of this air contaminant	
AQIA - SOx	increases in excess	Not Triggered	from this project does not	NA

	of 25 lbs/hr, 250		exceed any of these	
	lbs/day or 40 ton/yr		levels, so no AQIA is	
	of SOx calculated		required.	
	as SO2			
	Required for		The increase in emissions	
	project emission		of this air contaminant	
	increases in excess		from this project does not	
	of 100 lbs/hr, 550		exceed any of these	
	lbs/day or 1000		levels, so no AQIA is	
AQIA - CO	ton/yr of CO	Not Triggered	required.	NA
	Applicable to			
	source that may			
	have a significant		Emissions from this	
	impact on a class I		engine do not trigger PSD	
20.2(d)(3) - PSD	area	NA	requirements.	NA
	Requires 30 day			
	public notice if an			
	AQIA was required			
	or if increase in		AQIA was not required	
	VOC emissions		and VOC emission	
	from the project		increase from this project	
20.2(d)(4) - Public	exceed 250 lbs/day		does not exceed these	
Notice	or 40 ton/year	NA	levels.	NA

20.2(d)(1) – BACT

No BACT limits were triggered by this engine, therefore no BACT analysis is required for this project.

20.2(d)(2) – AQIA

No AQIA limits were triggered by this engine, therefore no AQIA is required for this project.

4.3 Toxic New Source Review – Rule 1200

District Rule 1200 applies to any application that is part of a project which results in an emission increase of toxic air contaminants. The rule limits the increase in acute and chronic health hazard index (HHI) to no more than one from the project and limits the increase in cancer risk from the project to no more than one in one million if the engine is not equipped with Toxics BACT (T-BACT) or no more than ten in one million if the project meets T-BACT requirements. The following table contains an in-depth review of Rule 1200 requirements. If a refined HRA was required, the HRA report is attached.

Question	Answer	Discussion
Does the application result in an increase in toxic emissions?	Yes	The application results in an increase in toxic emissions of Diesel Particulate Matter or specific trace heavy metals and organics (as shown in emission calculations section).
Do any special exemptions apply to this equipment?	No	No exemptions apply to this equipment
Are there any other applications that are part of the project?	No	NA
What type of HRA was used?	Refined	Engine did not pass De Minimis and was sent for a refined HRA. See HRA attached.
Is the Project Equipped with T-BACT?	Yes	This engine is equipped with a 3-way catalyst which is considered T-BACT for this equipment.
Cancer Risk increase (per one million)	0.03<10	Project meets standard of one in ten million.
Chronic HHI	1.91E-05≤1	Meets standard of one.
Acute HHI	0.0075≤1	Meets standard of one.
Passes Rule 1200?	Yes	Maintenance and testing (non-emergency operation) must be limited by permit conditions to 52 hours per calendar year

Table 5: Rule 1200 Applicable Requirements and Discussion

Based on this analysis, the proposed engine complies with all applicable requirements of District Rule 1200.

4.4 AB3205

Requirements in the California Health and Safety Code in sections 42301.6 through 42301.9 (a.k.a. "AB3205 requirements") specify that prior to issuing an authority to construct for sources located within 1000 feet of a K-12 school, a 30-day public notification process must be conducted.

This project is located within 1000 feet of a school (Museum School), so public notice is required for this section. A copy of the public notice is attached to the file and when the notice is issued, this evaluation and relevant attachments will be made available on the

District's website for review. If any comments are received, they will be reviewed, considered and responded to prior to taking action on the permit including revising any requirements as necessary in response to comments received.

4.5 State and Federal Regulations.

This engine is subject to federal EPA issued National Emission Standards for Hazardous Air Pollutants (NESHAPs) and New Source Performance Standards (NSPS). This engine is not subject to ATCM.

The NESHAP (subpart ZZZZ) requires that all new emergency engines comply with the rule by complying with the NSPS (subpart IIII). Applicable requirements of the NSPS include purchasing a certified engine, operating it as directed by the manufacturer, and maintaining records to substantiate compliance.

NESHAPs - 40 CFR Part 63 Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines (RICE)

§63.6590(c) requires that an affected source that is a new or reconstructed stationary RICE located at an area source to meet the requirements of 40 CFR part 60 Subpart IIII (NSPS), for compression ignition engines or 40 CFR Part 60 Subpart JJJJ (NSPS) for spark ignition engines. No further requirements apply for such engines under this part. *This engine is a new RICE located at an area source and must comply with the requirements of 40 CFR Part 60 Subpart JJJJ as shown below. Therefore, it is in compliance with NESHAP requirements.*

NSPS - 40 CFR Part 60 Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engines.

60.4230(a)(3)(iv) states that the provisions of this subpart are applicable to emergency engines that are manufactured on or after January 1, 2009.

- This emergency engine was manufactured in 2023, therefore it is subject to the requirement of this subpart.

§ 60.4233 (e) requires owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) to comply with the emission standards in Table 1 of this subpart. Table 1 requires emergency engines rated greater than 130 HP to meet the emission standards of 2.0 g/bhp-hr of NOx, 4.0 g/bhp-hr of CO and 1.0 g/bhp-hr for VOC.

- This engine complies with this requirement with emissions of 0.007 g/bhp-hr of NOx, 0.261 g/bhp-hr of CO, and 0.007 g/bhp-hr of VOC.

§ 60.4236 requires that after January 1, 2011, owners and operators of emergency stationary SI ICE with a maximum power of greater than 19 KW (25 HP) to not install engines that do not meet the applicable emission standard requirements of § 60.4233.

- This engine meets the emission standards requirements of § 60.4233 as shown above.

§60.4243(a)(1) requires that operators of a certified SI ICE that maintain the engine and control device according to the manufacturer's emission-related written instructions to keep records of conducted maintenance to demonstrate compliance.

- Records keeping requirements are included in permit conditions.

§60.4243(b)(1) requires owners or operators of a stationary SI ICE that must comply with the emission standards of §60.4233 to purchase an engine certified for the same model year and demonstrating compliance according to the methods specified in this subpart.

- This engine is certified for the same model year for engine family PKHXB06.2HNL.

§60.4243(d) allows emergency stationary ICE to be operated for the purpose of maintenance checks and readiness testing recommended by federal, State or local government for up to 100 hours per year.

- *Permit conditions will allow for testing and maintenance operation of 52 hours per year.*

§60.4243(g) stated that it is expected that air to fuel ratio controllers be used with the operation of three-way catalyst/non-selective catalytic reduction. The air to fuel ratio controller must be maintained and operated appropriately to ensure proper operation of the engine and control device to minimize emissions at all times.

- This engine is equipped with an internal electronic air to fuel ratio controller and permit conditions will ensure maintenance and operation compliance.

§60.4245(a) requires that owners and operators of stationary SI ICE to keep records of all notifications, maintenance, certification, compliance with the emission standard requirements if the engine is not certified.

- This engine is certified. Compliance with this requirement is verified for the engineering evaluation and is included in permit conditions.

4.6 Title V.

This is not a Title V facility therefore this requirement does not apply.

5.0 Recommendations

This equipment is expected to comply with all rules and regulations, and therefore it is recommended *(pending completion of the AB3205 noticing and comment process)* that an authority to construct be issued with the following conditions.

6.0 Recommended Conditions

Condition BEC APCD2020-CON-001653 with a 52 hour/year limit for nonemergency/maintenance and testing.

All relevant attachments are uploaded to BCMS under the corresponding application number.

Rule 1200 Health Risk Assessment

Facility Name:	Premium West Construction
Facility ID:	APCD2024-SITE-04614
Application:	APCD2024-APP-008382
Project Engineer:	Austin Stein
Modeler:	Bill Reeve
Toxics Risk Analyst:	Maria Galvez
Date Submitted to Toxics:	09/04/2024
Date Completed by Toxics:	9/25/2024
HRA Tools Used:	Lakes-AERMOD (Version 23132)/HARP (v22118)

The following estimated risks are valid only for the input data provided by the Project Engineer.

Estimated worker risk does not exceed the residential risk. Therefore, only residential risk is presented in the following results.

Estimated Risk Levels:

Maximum Individual Cancer Risk (Resident)	0.03 in one million						
Chronic Noncancer Health Hazard Index (Resident)	= 1.91E-05						
8-Hour Noncancer Health Hazard Index (Worker)	= NA*						
Maximum Acute Health Hazard Index	= 0.0075						
*8-Hour Non-Cancer Health Hazard Index is only applicable when calculating worker							
risk							

Premium West Construction, 04614 Application Number 008382 Input Data Provided by Project Engineer:

Type of Source:	Emergency Natural Gas Fired Engine
Controls Description:	None.

Worst-Case TAC Emissions Increase:

	Hourly Emission Rate	Annual Emission Rate
Toxic Air Contaminant	(lb/hr)	(lb/yr)
ACETALDEHYDE	4.87E-04	2.53E-02
ACROLEIN	1.68E-05	8.73E-04
BENZENE	2.68E-04	1.40E-02
1,3-Butadiene	1.17E-04	6.11E-03
ETHYL BENZENE	5.03E-06	2.62E-04
FORMALDEHYDE	3.51E-03	1.82E-01
METHANOL	5.20E-04	2.70E-02
METHYLENE CHLORIDE	6.71E-06	3.49E-04
NAPHTHALENE	1.68E-05	8.73E-04
PAHs	1.68E-05	8.73E-04
TOLUENE	1.01E-04	5.24E-03
XYLENES	3.36E-05	1.75E-03

Process Data:

Operation Parameter	Value
Engine horsepower (bhp)	204
Fuel Consumption (scf/hr)	1678
Annual hours of operation	52

Release Parameters:

Exhaust Flow Rate, cfm:	1024
Exhaust Temperature, °F:	1292
Stack Height above ground, ft:	81.0
Stack Diameter, ft:	0.29

Premium West Construction, 04614 Application Number 008382

Discussion

The HRA was conducted in accordance with EPA and OEHHA guidance and District standard procedures. A point source was modeled with refined air dispersion modeling using EPA's AERMOD model, AERMET (Version 23132) processed Lindbergh Field 2019/2021 ustar adjusted updated meteorology data, AERMAP terrain processing, and urban dispersion coefficients. Building downwash effects were calculated using the EPA BPIP-Prime model. The receptor grid was sufficiently dense to identify maximum impacts.

These risk results are based on the risk scenario calculations and health data at the time of the review and should not be scaled with revised emissions rates without consulting with the Toxics Section.

*HARP - HRACalc v22118 9/24/2024 12:02:08 PM - Cancer Risk - Input File: D:\8382_Premium West Construction\8382_RAST\resident_HRAInput.hra INDEX GRP1 GRP2 POLID POLABBRE CONC RISK_SUM SCENARIO

DEX	(GRP1	GRP2	POLID	POLABBRE (CONC	RISK_SUM	SCENARIO
	1 9	Source1		75070	Acetaldehy	2.10E-05	1.42E-10	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	2 9	Source1		107028	Acrolein	7.24E-07	0.00E+00	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	3 9	Source1		71432	Benzene	1.16E-05	7.85E-10	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	4 9	Source1		106990	1,3-Butadi	5.06E-06	2.05E-09	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	5 \$	Source1		100414	Ethyl Benz	2.17E-07	1.28E-12	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	6 9	Source1		50000	Formaldeh	0.000151	2.15E-09	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	7 :	Source1		67561	Methanol	2.24E-05	0.00E+00	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	8 9	Source1		75092	Methylene	2.89E-07	6.84E-13	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
	9 9	Source1		91203	Naphthale	7.24E-07	5.88E-11	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
1	.0 9	Source1		1151	PAHs-w/o	7.24E-07	2.05E-08	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
1	1 9	Source1		108883	Toluene	4.34E-06	0.00E+00	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
1	2 9	Source1		1330207	Xylenes	1.45E-06	0.00E+00	30YrCancerRMP_InhSoilDermMMilk_FAH16to70
							2.56E-08	

*HARP - H	RACalc v22	118 9/24/20	24 12:02:0	8 PM - Chror	nic Risk - In	put File: D:	\8382_Premium West Construction\8382_RAST\resident_HRAInput.hra
INDEX	GRP1	GRP2	POLID	POLABBRE	CONC	RESP	SCENARIO
1	Source1		75070	Acetaldehy	2.10E-05	1.50E-07	NonCancerChronicDerived_InhSoilDermMMilk
2	Source1		107028	Acrolein	7.24E-07	2.07E-06	NonCancerChronicDerived_InhSoilDermMMilk
3	Source1		71432	Benzene	1.16E-05	0.00E+00	NonCancerChronicDerived_InhSoilDermMMilk
4	Source1		106990	1,3-Butadi	5.06E-06	0.00E+00	NonCancerChronicDerived_InhSoilDermMMilk
5	Source1		100414	Ethyl Benz	2.17E-07	0.00E+00	NonCancerChronicDerived_InhSoilDermMMilk
6	Source1		50000	Formaldeh	0.000151	1.68E-05	NonCancerChronicDerived_InhSoilDermMMilk
7	Source1		67561	Methanol	2.24E-05	0.00E+00	NonCancerChronicDerived_InhSoilDermMMilk
8	Source1		75092	Methylene	2.89E-07	0.00E+00	NonCancerChronicDerived_InhSoilDermMMilk
9	Source1		91203	Naphthale	7.24E-07	8.04E-08	NonCancerChronicDerived_InhSoilDermMMilk
10	Source1		1151	PAHs-w/o	7.24E-07	0.00E+00	NonCancerChronicDerived_InhSoilDermMMilk
11	Source1		108883	Toluene	4.34E-06	0.00E+00	NonCancerChronicDerived_InhSoilDermMMilk
12	Source1		1330207	Xylenes	1.45E-06	2.07E-09	NonCancerChronicDerived_InhSoilDermMMilk
						1.91E-05	

*HARP - HRACalc v22118 9/24/2024 12:02:08 PM - Acute Risk - Input File: D:\8382_Premium West Construction\8382_RAST\resident_HRAInput.hra

						•	-
INDEX	GRP1	GRP2	POLID	POLABBRE	CONC	EYE	SCENARIO
	1 Source1		75070	Acetaldehy	0.0509	1.08E-04	NonCancerAcute
	2 Source1		107028	Acrolein	0.00176	7.04E-04	NonCancerAcute
	3 Source1		71432	Benzene	0.0281	0.00E+00	NonCancerAcute
	4 Source1		106990	1,3-Butadi	0.0123	0.00E+00	NonCancerAcute
	5 Source1		100414	Ethyl Benz	0.000527	0.00E+00	NonCancerAcute
	6 Source1		50000	Formaldeh	0.367	6.67E-03	NonCancerAcute
	7 Source1		67561	Methanol	0.0544	0.00E+00	NonCancerAcute
	8 Source1		75092	Methylene	0.000702	0.00E+00	NonCancerAcute
	9 Source1		91203	Naphthale	0.00176	0.00E+00	NonCancerAcute
:	10 Source1		1151	PAHs-w/o	0.00176	0.00E+00	NonCancerAcute
:	11 Source1		108883	Toluene	0.0105	2.10E-06	NonCancerAcute
:	12 Source1		1330207	Xylenes	0.00351	1.60E-07	NonCancerAcute
						7.49E-03	

AERMOD View - Lakes Environmental Software

D:\8382_Premium West Construction\8382_Premium_BR\8382_Premium.isc

AERMOD View - Lakes Environmental Software

D:\8382_Premium West Construction\8382_Premium_BR\8382_Premium.isc

RISK ANALYST ONLY										
Annual Receptor Type: Resident		Hourly Rec	eptor Type:	PMI	-					
ANNUAL DISPERSION FACTOR (µg/m3)/(g/s):	57.7	OURLY DIS	PERSION F	ACTOR (μ	g/m3)/(g/s):	830.4				
Distance (m):				Di	stance (m):					
	Acute	Annual	Acute	Annual	Hourly	Annual				
	Emission	Emission	Emissions	Emission	GLC	GLC				
	Rate	Rate	Rate	Rate						
CHEMICAL NAME	lb/hr	lb/yr	g/s	g/s	µg/m³	µg/m ³				
ACETALDEHYDE	4.87E-04	2.53E-02	6.13E-05	3.64E-07	5.09E-02	2.10E-05				
ACROLEIN	1.68E-05	8.73E-04	2.11E-06	1.26E-08	1.76E-03	7.24E-07				
BENZENE	2.68E-04	1.40E-02	3.38E-05	2.01E-07	2.81E-02	1.16E-05				
BUTADIENE, 1,3-	1.17E-04	6.11E-03	1.48E-05	8.79E-08	1.23E-02	5.06E-06				
ETHYL BENZENE	5.03E-06	2.62E-04	6.34E-07	3.77E-09	5.27E-04	2.17E-07				
FORMALDEHYDE	3.51E-03	1.82E-01	4.42E-04	2.62E-06	3.67E-01	1.51E-04				
METHANOL	5.20E-04	2.70E-02	6.55E-05	3.89E-07	5.44E-02	2.24E-05				
METHYLENE CHLORIDE	6.71E-06	3.49E-04	8.46E-07	5.02E-09	7.02E-04	2.89E-07				
NAPHTHALENE	1.68E-05	8.73E-04	2.11E-06	1.26E-08	1.76E-03	7.24E-07				
POLYCYCLIC AROM. HC (PAH) [Treat as B(a)P for HRA]	1.68E-05	8.73E-04	2.11E-06	1.26E-08	1.76E-03	7.24E-07				
TOLUENE	1.01E-04	5.24E-03	1.27E-05	7.53E-08	1.05E-02	4.34E-06				
XYLENES	3.36E-05	1.75E-03	4.23E-06	2.51E-08	3.51E-03	1.45E-06				

		_													
Facility Name:	Premium West Construction						Con	pletion	Check List		i	LE	GEND		
Application Number:	APCD2024-APP-008382	Ļ			Item				Attached and Con		i				
Site ID Number:	APCD2024-SITE-04614 2710 3rd Ave, San Diego, CA	Į.					Yes	No		Notes	i				
Equipment Address:	2710 3rd Ave, san Diego, CA 92103			0-	neral Application		1	Yes			i		Enter information in	4	
Equipment Address: Is there an existing, pre-projec	52103	ł		Ge	neral Application							-	Enter information in	these cells	T
engine? (yes/no) No			En	nergency Engine Supplemer	ental Form)	Yes							
APCD Project Engineer:	Austin Stein	t		To	dcs Form		١	Yes				-	Calculation Fie	ld (DO NOT EDIT)	
		•		Plo	t Plan(s)/Site Map(s) with re	required	1	Yes							
		T			ations			Yes							
Make: Model:	Kohler KG6208THD	+		En	gine Manufacturer Specs gine Emissions Data			Yes					Highlight Fields (DC	NOT EDIT) s Field (DO NOT EDIT	\ \
S/N:	TBD	ł		En	gine CARB/EPA Certificatio	on		Yes			-	-	Calculation Field (In	portant Information) (, DO NOT EDIT)
Fuel Type:	Natural Gas (NG)	İ.		Co	ntrol Equipment Specs (if ap	applicable)									
BHP Rating:	204	Į.		BA	CT Analysis (if applicable)										
Model Year: EPA Certified?	2023 Yes	-													
Engine Family Number:	PKHXB06.2HNL	-													
Device Driven:	125 kW standby generator	ł													
Control Equipment:	3-way catalyst	t													
	Based on Manufact	urer Specs (ente	r only one em	nission factor type	per pollutant)										
NOx: g/BHP-hr:	0.007	0.01 g/k	W-hr	pp	mvd @ 15% O2	-		lbs/MMbtu lbs/MMbtu							
CO: g/BHP-hr: NMHC: g/BHP-hr:	0.261	0.35 g/k	W-hr	pp	mvd @ 15% O2 mvd @ 15% O2	-		lbs/MMbtu lbs/MMbtu							
NMHC: g/BHP-fil:	N/A; calculation will use	0.01 g/	ww-rit	pp	mva (gr 15% O2	-		IDS/WIMDLU							
PM10: g/BHP-hr:	default value	g/k	W-hr	pp	mvd @ 15% O2			lbs/MMbtu							
									1						
NOx: g/BHP-hr: + NMHC: g/BHP	-hr:	0.01													
L									J						
	Select fuel units if not [s	scf/hr]	Con	verted Fuel Usa	ge	1									
Fuel Usage:	1678.0	scf/hr		1678 scf				scf/lb [NG]		for NG, standard conditions (14	.7 PSI, 68 degrees	Fahrenheit)	16 ÷	385 =	0.04156 lb/scf
				1.7 MM	lbtu/hr			btu/scf [NC scf/lb [LPG		for LPG, standard conditions (1			lb/lb-mol NG	scf/lb-mol	0.11100 0.1.1
				69.7 lb/	hr	- F				for LPG, standard conditions (1	4.7 PSI, 68 degree	s Fahrenheit)	44 ÷ Ib/lb-mol LPG	385 = scf/lb-mol	0.11429 lb/scf
Operating Schedule, hrs/day:	24						25/2	btu/scf [LP	G				ID/ID-MOI LPG	sci/ib-moi	
Operating Schedule, hrs/yr:	52	İ													
		т													
Exhaust Flow Rate, cfm: Exhaust Temperature, °F:		ł													
Stack Height above ground, ft:	81.00	ł													
	0.29	ł													
		1													
Nearest School, ft:	512.00		If les	ss than 1000 ft fro	m source of emissions to so	ichool prop	erty line a	nd increase	in toxic emissions, AB32	05 notice may be required					
Residential Receptor, m: Occupational Receptor, m:		30.00 ft			1. W. 1										
Occupational Receptor, m: Acute Receptor, m:		30.00 ft 30.00 ft	Con	sult Toxics? Co	nsult Toxics										
Acute Receptor, III.	23.00	30.00													
Vertical Exhaust? (yes/no):	Yes	I													
If not vertical, describe (e.g	4														
horizontal, 45 degrees, etc.															
Flapper Valve	>	Ī													
(flapper/raincap/no hard cover)		Į.													
Flow Obstructions (yes/no): Point or Volume source?	No	ł													
Single or multiple point/volume		ł													
sources	Single														
											_				
Emission Standards	(Emergency NG):	↓ ∟					69.4.1								
25 <hp<130< td=""><td>HP≥130</td><td>t I</td><td></td><td></td><td>(E) New or</td><td>r Replac</td><td>ement</td><td>Emerger</td><td>cy Standby Engin</td><td>es</td><td></td><td></td><td></td><td></td><td></td></hp<130<>	HP≥130	t I			(E) New or	r Replac	ement	Emerger	cy Standby Engin	es					
NSPS Part 60 Subpart JJJJ	NSPS Part 60 Subpart JJJJ	T I	_						,						
NMHC + NOx (g/kW-hr): 10 CO (g/kW-hr) : 387	NOx (g/kW-hr): 2.0 CO (g/kW-hr): 4.0				Engine Type C	Concentr	ation of	NOv	Concentration of	Concentration of CO3					
GG (g/kw-ni) 1387	CO (g/kW-hr): 4.0 VOC (g/kW-hr): 1.0		L			_ oncentr			VOC ²	- incentration of CO					
			F	Rich-burn engi zaseous fuel	ines using	2	5 ppmv		86 ppmv	540 ppmv					
Stationary Part I NMHC + NOx (g/kW-hr): 2.7	Stationary Part I NMHC + NOx (g/kW-hr): 2.7														
NMHC + NUX (g/kw-nr): 2.7 CO (g/kW-hr): 4.4	NMHC + NOX (g/kW-hr): 2.7 CO (g/kW-hr): 4.4		I	Lean-burn eng gaseous fuel	ines using	2.0	g/bhp-l 160 ppn	hr	1.0 g/bhp-hr or 86 ppmy	4.0 g/bhp-hr or 540 ppmy					
		L	2	Juseous ruel		51	. oo ppn		or oo ppint	or 540 ppmv	_				
	-														
· · · · · · · · · · · · · · · · · · ·	Emission standards	1													
	manual at 162	N6													
Engine type Maximum and fuel engine pow	Manufacture pHP-hr O,														
Non-Emergency SI Natural 1005HP550) 7/1/2008 2.0 4.0 1.0 160 540 8	 16													
Non-Emergency SI Natural Gase and Non-Emergency SI Lean Burn LPG-															
	1/1/2011 1.0 2.0 0.7 82 270 6	ia		Up	odated 4/16/2024										
Non-Emergency SI Lean Burn 5005HP51,3 Natural Gas and LPG	50 1/1/2008 2.0 4.0 1.0 160 540 8	16													
	7/1/2010 1.0 2.0 0.7 82 270 6	-0													
Nen-Emergency SI Natural Gas HP:500 and Non-Emergency SI Lean Burn LPG (except lean burn 500::HP<1,350)	7/1/2007 2.0 4.0 1.0 160 540 8	66													
LPG (except lean burn 500:HP<1.350)															
HP::500	7/1/2010 1.0 2.0 0.7 82 270 6	10													
Landfill/Digester Gas (except lean HP<500 burn 500:(HP<1,350)	7/1/2008 3.0 5.0 1.0 220 610 8	10													
	1/1/2011 2.0 5.0 1.0 150 610 8														
HP::500	7/1/2007 3.0 5.0 1.0 220 610 8	10													
Landfill/Digester Gas Lean Barn 5005HP<1,3	7/1/2010 2.0 5.0 1.0 150 610 8 50 1/1/2008 3.0 5.0 1.0 220 610 8	0													
	7/1/2010 2.0 5.0 1.0 150 610 8	10													
Emergency 25 <hp<130< td=""><td>1/1/2009 -10387 N/A N/A N/A N/</td><td><u>A</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></hp<130<>	1/1/2009 -10387 N/A N/A N/A N/	<u>A</u>													
HP:130	2.0 4.0 1.0 160 540 8	16													
L															

INSERT PHOTO(S) OF PLOT MAP SHOWING GENERATOR LOCATION AND PROPERTY BOUNDARY

APCD Map Viewer

San Diego Air Pollution Control District Supplemental Application Information Rule 1200 Toxics Evaluation									
(ALL REQUESTED INFORMATION IS IMPORTANT - PLEASE ENSURE ORANGE CELLS ARE FILLED, IF KNOWN)									
Facility Name:	Premium West Construction								
Equipment Location:	2710 3rd Ave, San Diego, CA 92	2103							
Project Description:	Natural Gas (NG) Engine								
Control Equipment:	3-way catalyst								
Operating Schedule:	Hours per Day:		Weeks per Year:						
	Days per Week:		Days per Year:						
			-						

RELEASE POINT DATA

How are the emissions from this project released into the outdoor air? (Check all that apply)

Point Source		Non-Point Source	
Exhaust Stack or Duct	Passive Ventilation	Released through windows and/or roll-up doors	Fugitive Emissions

Point Source

Parameter	Point Source #1	Point Source #2	Point Source #3
Height of release above ground (ft)	81.00		
Stack Diameter (or length x width) (ft)	0.29		
Exhaust Gas Temperature (°F) ¹	1292.000		
Exhaust Gas Flow (ACFM)	1024.000		
Direction of Flow ²	vertical		
Flow Obstruction ³	No		
Distance to Nearest Property Line (+/- 10ft)	30.00		
¹ Use "70 °F" or "Ambient" if unknown			
² if "other" describe: 0			
³ if "other" describe:			

AERIAL MAP AND FACILITY PLOT PLAN must be attached and labeled with Release Point(s) and Building(s) (includes facility and neighboring buildings within 5x the release height of a point source(s)).

Parameter	Building A	Building B	Building C
Point Source(s)			
Point Source Location			
Building Length (ft) (optional)			
Building Width (ft) (optional)	See attached plot plan pdf		
Building Height above ground (ft)			

San Diego APCD Use Only Additional Rule 1200 Submittal Information

Submittal Date:	Site ID: APCD2024-SITE-04614
Project Engineer: Austin Stein	Appl. Number(s): APCD2024-APP-008382
Fees Collected:	PTO No. (if existing):

Toxic Screening

od E19 - 1

Instruction Click below link to open the "Rule 1200" sharepoint folder. Find the most recent generic toxics excel sheet and download a copy. Paste as text only the below cells (purple highlight ad) into the "Data" page of the "Rule 1200 generictoxics" excel workbook. Follow instructions of de minimis sheet. Rule 1200

Applicant:	Premium West Construction													
Application :	APCD2024-APP-008382													
	Fuel consumption(Proposed Engine):		scf/hour	Fuel	Type (Propos	sed):	Natural Gas (N	G)						
Fuel consumption (Exi		0.00	scf/hour		Type (Existi		,	ó						
	rmed based on natural gas emi	issions since n	atural gas tox				ites for propane	toxic em	ission factors).					
	ral Gas EFs were changed to									572 htu/	ecf)			
101110.1440	in ous his were enanged to	r ropune of et	Areeting for t	ine usounieu i	actually value of	01110 (102	o ota sei) ana se	unum u m	ande for propane (2	572 010.				
Operating hours														
(Proposed Engine):	62	hours/year												
Operating hours	52	nours year												
(Existing Engine):		hours/year												
Control Efficiency:	3-way catalyst required		factors reflect	the control	- 07 - i									
Dispersion Adjustment		Hourly:		Annual:										
Dispersion Aujustmen	ractors.	rioury.	1	Annual.	1									
		NG -	LPG -											
		Emission	Emission											
	TAC	Factor (*)	Factor (*)	Toxic Er	missions			Г				Emission	Increase	
	TAC	Factor (*) (lbs/million	Factor (*) (lbs/million					CAS		0	ompound		Increase	
75070		Factor (*) (lbs/million scf)	Factor (*) (lbs/million scf)	lbs/hour	lbs/year			CAS			ompound	lbs/hr	lbs/yr	
	ACETALDEHYDE	Factor (*) (lbs/million scf) 2.90E-01	Factor (*) (lbs/million scf) 7.31E-01	lbs/hour 4.87E-04	lbs/year 2.53E-02			CAS	7	5070 A	CETALDE	lbs/hr 4.87E-04	lbs/yr 2.53E-02	
107028	ACETALDEHYDE ACROLEIN	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02	Ibs/hour 4.87E-04 1.68E-05	Ibs/year 2.53E-02 8.73E-04			CAS	7	5070 A	CETALDE	lbs/hr 4.87E-04 1.68E-05	lbs/yr 2.53E-02 8.73E-04	
107028 71432	ACETALDEHYDE ACROLEIN BENZENE	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01	lbs/hour 4.87E-04 1.68E-05 2.68E-04	Ibs/year 2.53E-02 8.73E-04 1.40E-02			CAS	7 10 7	5070 A0 7028 A0 1432 BI	CETALDEI CROLEIN ENZENE	lbs/hr 4.87E-04 1.68E-05 2.68E-04	lbs/yr 2.53E-02 8.73E-04 1.40E-02	
107028	ACETALDEHYDE ACROLEIN	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02	Ibs/hour 4.87E-04 1.68E-05	Ibs/year 2.53E-02 8.73E-04			CAS	7 10 7 10	5070 A 7028 A 1432 B 6990 1,	CETALDEI CROLEIN ENZENE 3-Butadier	lbs/hr 4.87E-04 1.68E-05	lbs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03	
107028 71432 106990 100414	ACETALDEHYDE ACROLEIN BENZENE 1,3-Butadiene	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01 7.00E-02	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01 1.77E-01	Ibs/hour 4.87E-04 1.68E-05 2.68E-04 1.17E-04	Ibs/year 2.53E-02 8.73E-04 1.40E-02 6.11E-03			CAS	7 10 7 10 10	5070 A 7028 A 1432 B 6990 1, 0414 E	CETALDEI CROLEIN ENZENE 3-Butadier THYL BEN	lbs/hr 4.87E-04 1.68E-05 2.68E-04 1.17E-04	lbs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04	
107028 71432 106990 100414 50000	ACETALDEHYDE ACROLEIN BENZENE 1.3-Butadiene ETHYL BENZENE	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01 7.00E-02 3.00E-03	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01 1.77E-01 7.56E-03	lbs/hour 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06	Ibs/year 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04			CAS	7 10 7 10 10 10 5	5070 A0 7028 A0 1432 BI 6990 1, 0414 E 0000 F0	CETALDEI CROLEIN ENZENE 3-Butadier THYL BEN ORMALDE	lbs/hr 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06	lbs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01	
107028 71432 106990 100414 50000 67561	ACETALDEHYDE ACROLEIN BENZENE 1,3-Butadiene ETHYL BENZENE FORMALDEHYDE	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01 7.00E-02 3.00E-03 2.09E+00	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01 1.77E-01 7.56E-03 5.27E+00	Ibs/hour 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03	Ibs/year 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01			CAS	7 10 7 10 10 5 6	5070 A 7028 A 1432 B 6990 1, 0414 E 0000 F 7561 M	CETALDEI CROLEIN ENZENE 3-Butadier THYL BEN ORMALDE ETHANOL	lbs/hr 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03	lbs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02	
107028 71432 106990 100414 50000 67561 75092 91203	ACETALDEHYDE ACROLEIN BENZENE I.J.Butadiene ETHYL BENZENE FORMALDEHYDE METHANOL METHYLENE CHLORIDE NAPHTHALENE	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01 7.00E-02 3.00E-03 2.09E+00 3.10E-01	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01 1.77E-01 7.56E-03 5.27E+00 7.82E-01	lbs/hour 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04	Ibs/year 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02			CAS	7 10 7 10 10 5 6 7	5070 A0 7028 A0 1432 BI 6990 1, 0414 E 0000 F0 7561 M 5092 M	CETALDEI CROLEIN ENZENE 3-Butadier THYL BEN ORMALDE ETHANOL ETHYLEN	lbs/hr 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04	lbs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02 3.49E-04	
107028 71432 106990 100414 50000 67561 75092 91203	ACETALDEHYDE ACROLEIN BENZENE 1.3-Butadiene ETHYL BENZENE FORMALDEHYDE METHANOL METHYLENE CHLORIDE	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01 7.00E-02 3.00E-03 2.09E+00 3.10E-01 4.00E-03	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01 1.77E-01 7.56E-03 5.27E+00 7.82E-01 1.01E-02	Ibs/hour 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04 6.71E-06	Ibs/year 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02 3.49E-04			CAS	7 10 7 10 10 5 6 7 9 9 9	5070 A0 7028 A0 1432 BI 6990 1, 0414 E 0000 F0 7561 M 5092 M	CETALDEI CROLEIN ENZENE 3-Butadier THYL BEN ORMALDE ETHANOL ETHYLEN APHTHAL	lbs/hr 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04 6.71E-06 1.68E-05	lbs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02 3.49E-04	
107028 71432 106990 100414 50000 67561 75092 91203 1151 108883	ACETALDEHYDE ACROLEIN BENZENE 1,3-Butadiene ETHYL BENZENE FORMALDEHYDE METHANOL METHYLENE CHLORIDE NAPHTHALENE PAHs TOLUENE	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01 7.00E-02 3.00E-03 3.10E-01 4.00E-03 1.00E-02	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01 1.77E-01 7.56E-03 5.27E+00 7.82E-01 1.01E-02 2.52E-02	Ibs/hour 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04 6.71E-06 1.68E-05	lbs/year 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02 3.49E-04 8.73E-04			CAS	7 10 7 10 10 10 5 6 7 9	5070 A0 7028 A0 1432 B1 6990 1, 0414 E 0000 F0 7561 M 5092 M 1203 NJ 1151 PJ	CETALDEI CROLEIN ENZENE 3-Butadier THYL BEN ORMALDE ETHANOL ETHYLEN APHTHAL	Ibs/hr 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04 6.71E-06 1.68E-05 1.68E-05	Ibs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02 3.49E-04 8.73E-04	
107028 71432 106990 100414 50000 67561 75092 91203 1151 108883	ACETALDEHYDE ACROLEIN BENZENE 1,3-Butadiene ETHYL BENZENE FORMALDEHYDE METHALENE NAPHTHALENE NAPHTHALENE PAHS	Factor (*) (lbs/million scf) 2.90E-01 1.00E-02 1.60E-01 7.00E-02 3.00E-03 2.09E+00 3.10E-01 4.00E-03 1.00E-02 1.00E-02	Factor (*) (lbs/million scf) 7.31E-01 2.52E-02 4.03E-01 1.77E-01 7.56E-03 5.27E+00 7.82E-01 1.01E-02 2.52E-02 2.52E-02	lbs/hour 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04 6.71E-06 1.68E-05 1.68E-05	Ibs/year 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02 3.49E-04 8.73E-04			CAS	7 10 7 10 10 10 5 6 7 7 9 10	5070 A 7028 A 1432 B 6990 1, 0414 E 0000 F 7561 M 5092 M 1203 N 1151 P 8883 T	CETALDE CROLEIN ENZENE 3-Butadier THYL BEN ORMALDE ETHANOL ETHYLEN APHTHAL AHS	lbs/hr 4.87E-04 1.68E-05 2.68E-04 1.17E-04 5.03E-06 3.51E-03 5.20E-04 6.71E-06 1.68E-05 1.68E-05 1.01E-04	Ibs/yr 2.53E-02 8.73E-04 1.40E-02 6.11E-03 2.62E-04 1.82E-01 2.70E-02 3.49E-04 8.73E-04 8.73E-04	1

ce Rich Burn y

HARP2 - HRACalc (dated 22118) 9/24/2024 12:02:08 PM - Output Log GLCs loaded successfully Pollutants loaded successfully RISK SCENARIO SETTINGS Receptor Type: Resident Scenario: All Calculation Method: Derived ***** EXPOSURE DURATION PARAMETERS FOR CANCER Start Age: -0.25 Total Exposure Duration: 30 Exposure Duration Bin Distribution 3rd Trimester Bin: 0.25 0<2 Years Bin: 2 2<9 Years Bin: 0 2<16 Years Bin: 14 16<30 Years Bin: 14 16 to 70 Years Bin: 0 ***** PATHWAYS ENABLED NOTE: Inhalation is always enabled and used for all assessments. The remaining pathways are only used for cancer and noncancer chronic assessments. Inhalation: True Soil: True Dermal: True Mother's milk: True Water: False Fish: False Homegrown crops: False Beef: False Dairy: False Pig: False Chicken: False Egg: False INHALATION Daily breathing rate: RMP **Worker Adjustment Factors**

Worker adjustment factors enabled: NO **Fraction at time at home** 3rd Trimester to 16 years: OFF 16 years to 70 years: ON ****** SOIL & DERMAL PATHWAY SETTINGS Deposition rate (m/s): 0.02 Soil mixing depth (m): 0.01 Dermal climate: Warm ****** TIER 2 SETTINGS Tier2 not used. ************* Calculating cancer risk Cancer risk saved to: D:\8382_Premium West Construction\8382_RAST\resident_CancerRisk.csv Calculating chronic risk Chronic risk saved to: D:\8382_Premium West Construction\8382 RAST\resident NCChronicRisk.csv Calculating acute risk Acute risk saved to: D:\8382_Premium West Construction\8382_RAST\resident_NCAcuteRisk.csv HRA ran successfully

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** POINT SOURCE DATA ***

SOURCE ID		EMISSION RATE (GRAMS/SEC)	Х	Y (METERS) 	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BLDG EXISTS	URBAN SOURCE		EMIS RATE SCALAR VARY BY
STCK1 ★ *** AERMOD *** AERMET - *** MODELOPTS	- VERSION		*** C:\Us ***	ers\bree	ve\OneDri	24.69 ve - Cour			0.09 Drive\Model	YES ling Pro	YES je *** ***	NO	09/23/24 12:06:15 PAGE 1
			*	** M	ODEL SETU	P OPTIONS	SUMMARY	***					
<pre>* Model * NO GAS * NO PAF * Model * Model * Model * Stack * Model * Use Ca * Use MS * Use MS * No Exp * Model for To Urban Popu * Urban</pre>	Uses Reg Is Setup S DEPOSIT RTICLE DE Uses NO -tip Down Accounts alms Proc issing Da ponential Uses URB otal of lation = Roughnes	ulatory DEFAL For Calculat ION Data Prov POSITION Data DRY DEPLETION WET DEPLETION wash. for ELEVated essing Routir ta Processing	ion of Ave ided. Provided. DDPLETE WETDPLT Terrain E Routine. Routine. Algorithm ea(s): Urban Ro 0 Meter U	<pre>rage CON = F = F ffects. for the ughness sed.</pre>	SBL for Length =	1 Sou	rce(s),						

* CCVR Sub - Meteorological data includes CCVR substitutions * TEMP Sub - Meteorological data includes TEMP substitutions * NOTURBST - Meteorological data Ignore turbulence - stable hours * Model Assumes No FLAGPOLE Receptor Heights. * The User Specified a Pollutant Type of: OTHER **Model Calculates 1 Short Term Average(s) of: 1-HR and Calculates PERIOD Averages **This Run Includes: 1 Source(s); 1 Source Group(s); and 22817 Receptor(s) with: 1 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) 0 VOLUME source(s) and: 0 AREA type source(s) and: and: 0 LINE source(s) 0 RLINE/RLINEXT source(s) and: 0 OPENPIT source(s) and: 0 BUOYANT LINE source(s) with a total of and: 0 line(s) Ø SWPOINT source(s) and:

**Model Set To Continue RUNning After the Setup Testing.

**The AERMET Input Meteorological Data Version Date: 22112

Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword) Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 9.00 ; Decay Coef. = 0.000 ; Rot. Angle = 0.0 Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M3

**Approximate Storage Requirements of Model = 6.1 MB of RAM.

**Input Runstream File: aermod.inp
**Output Print File: aermod.out

**Detailed Error/Message File: 8382_Premium.err
**File for Summary of Results: 8382_Premium.sum

 *** AERMOD - VERSION 23132 *** *** C:\Users\breeve\OneDrive - County of San Diego\HDrive\Modeling Proje *** 09/23/24
 *** AERMET - VERSION 22112 *** *** 12:06:15

PAGE 2

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

★ *** AERMOD - VERSION 23132 *** *** C:\Users\breeve\OneDrive - County of San Diego\HDrive\Modeling Proje *** 09/23/24 *** AERMET - VERSION 22112 *** ***

PAGE 3

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

Surface file: ..\..\Meteorology Documents\AERMET Files\AERMET 22112 PROJECTS\SAN\Lindbergh_ Met Version: 22112 Profile file: ..\..\Meteorology Documents\AERMET Files\AERMET 22112 PROJECTS\SAN\Lindbergh_ Surface format: FREE

Profile format: FREE Surface station no.: 23188 Upper air station no.: 3190 Name: SAN_DIEGO/LINDBERGH_FIELD Name: UNKNOWN Year: 2019 Year: 2019

First 24 hours of scalar data YR MO DY JDY HR HØ U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS HT REF TA HT WD - - --3.8 0.078 -9.000 -9.000 -999. 0.83 1.40 10.0 282.5 2.0 19 01 01 1 01 53. 11.4 0.02 1.00 356. 19 01 01 -4.6 0.086 -9.000 -9.000 -999. 12.4 0.02 0.83 1.00 1.55 336. 10.0 281.4 2.0 1 02 61. 18.0 0.02 19 01 01 1 03 -9.4 0.123 -9.000 -9.000 -999. 0.83 1.00 2.18 357. 10.0 281.4 2.0 104. 2.0 19 01 01 1 04 -13.9 0.151 -9.000 -9.000 -999. 25.2 0.02 0.83 1.00 2.64 26. 10.0 281.4 141. 19 01 01 1 05 -13.7 0.150 -9.000 -9.000 -999. 24.7 0.01 0.83 2.64 31. 10.0 280.9 2.0 139. 1.00 28.2 0.01 19 01 01 1 06 -15.6 0.160 -9.000 -9.000 -999. 154. 0.83 1.00 2.81 40. 10.0 282.0 2.0 -20.6 0.202 -9.000 -9.000 -999. 45.1 0.02 0.83 10.0 280.3 2.0 19 01 01 1 07 219. 1.00 3.47 26. 65.8 0.02 -11.1 0.200 -9.000 -9.000 -999. 0.83 3.39 18. 10.0 281.4 19 01 01 1 08 215. 0.49 2.0 19 01 01 -26.2 0.02 0.83 24. 10.0 284.2 2.0 1 09 36.3 0.219 0.541 0.005 158. 245. 0.29 3.15 80.5 0.251 0.835 0.005 -17.9 0.02 19 01 01 262. 3.52 28. 10.0 285.9 1 10 302. 0.83 0.22 2.0 19 01 01 1 11 110.8 0.250 1.329 0.005 771. 300. -12.8 0.02 0.83 0.20 3.41 26. 10.0 287.0 2.0 1 12 125.5 0.288 1.459 19 01 01 0.005 899. 371. -17.3 0.01 0.83 0.19 4.07 45. 10.0 288.8 2.0 19 01 01 1 13 118.6 0.434 1.485 0.005 1004. 687. -62.6 0.01 0.83 0.19 6.63 39. 10.0 288.8 2.0 19 01 01 1 14 100.0 0.500 1.440 0.005 1085. 848. -113.5 0.01 0.83 0.20 7.81 34. 10.0 288.8 2.0 0.23 19 01 01 1 15 65.6 0.423 1.270 0.005 1134. 665. -104.6 0.02 0.83 6.52 28. 10.0 288.8 2.0 19 01 01 1 16 18.3 0.364 0.833 0.005 1147. 529. -238.7 0.01 0.83 0.32 5.79 41. 10.0 288.1 2.0 19 01 01 1 17 -24.7 0.277 -9.000 -9.000 -999. 355. 84.7 0.01 0.83 0.59 4.73 30. 10.0 286.4 2.0 19 01 01 1 18 -12.2 0.141 -9.000 -9.000 -999. 141. 22.0 0.01 0.83 1.00 2.50 57. 10.0 285.9 2.0 1 19 -18.0 0.179 -9.000 -9.000 -999. 35.3 0.01 0.83 3.12 58. 10.0 284.8 2.0 19 01 01 182. 1.00 19 01 01 1 20 -24.4 0.243 -9.000 -9.000 -999. 287. 64.8 0.01 0.83 1.00 4.17 48. 10.0 284.2 2.0 1 21 -19.0 0.188 -9.000 -9.000 -999. 39.0 0.02 0.83 61. 283.8 19 01 01 197. 1.00 3.24 10.0 2.0 1 22 -27.5 0.272 -9.000 -9.000 -999. 0.83 341. 81.5 0.02 1.00 4.61 61. 10.0 283.1 2.0 19 01 01 1 23 -27.4 0.272 -9.000 -9.000 -999. 81.6 0.02 0.83 1.00 4.61 68. 10.0 283.8 2.0 19 01 01 341. 1 24 -23.9 0.237 -9.000 -9.000 -999. 61.6 0.02 0.83 71. 10.0 283.1 19 01 01 277. 1.00 4.03 2.0

First hour of profile data

F indicates top of profile (=1) ★ *** AERMOD - VERSION 23132 ** *** AERMET - VERSION 22112 ***	** *** C:\Users\breeve\OneD	rive - County of San Diego	o\HDrive\Modeling	Proje *** ***	09/23/24 12:06:15 PAGE 4
*** MODELOPTs: RegDFAULT CO	NC ELEV URBAN ADJ_U*				
	*** THE SUMMARY OF MA	XIMUM PERIOD (26304 HRS)) RESULTS ***		
	** CONC OF OTHER IN MI	CROGRAMS/M**3	**		
GROUP ID	VERAGE CONC RE	CEPTOR (XR, YR, ZELEV, Z	ZHILL, ZFLAG) OF	NETWORK TYPE GRID-ID	-
ALL 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS	113.52421 AT (484798.13, 103.67893 AT (484798.42, 98.13386 AT (484797.84, 90.18740 AT (484797.84, 88.88693 AT (484789.82, 85.76873 AT (484802.00, 79.08471 AT (484822.00, 65.89449 AT (484781.23, 58.37183 AT (484797.55, 57.65345 AT (484822.00,	3621764.42,80.61,3621778.00,80.92,3621783.53,81.10,3621764.24,80.47,3621758.00,80.50,3621758.00,80.83,3621764.06,80.17,3621793.08,81.18,	80.90,0.00)80.61,0.00)80.92,0.00)81.10,0.00)81.63,0.00)80.50,0.00)80.83,0.00)81.63,0.00)81.63,0.00)81.63,0.00)81.35,0.00)	DC DC DC DC DC DC DC DC	

*** RECEPTOR TYPES: GC = GRIDCART

19 01 01 01 10.0 1 356.

- GP = GRIDPOLR
- DC = DISCCART

YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV

1.40 282.6 99.0 -99.00 -99.00

- DP = DISCPOLR
- ★ *** AERMOD VERSION 23132 *** *** C:\Users\breeve\OneDrive County of San Diego\HDrive\Modeling Proje *** 09/23/24 *** AERMET - VERSION 22112 *** ***

PAGE 5

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** THE SUMMARY OF HIGHEST 1-HR RESULTS ***

** CONC OF OTHER IN MICROGRAMS/M**3 ** DATE NETWORK (YYMMDDHH) RECEPTOR (XR, YR, ZELEV, ZHILL, ZFLAG) GROUP ID AVERAGE CONC OF TYPE GRID-ID HIGH 1ST HIGH VALUE IS 830.37207 ON 19010710: AT (484797.26, 3621802.64, 81.24, ALL 81.24, 0.00) DC *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLRDC = DISCCART DP = DISCPOLR ★ *** AERMOD - VERSION 23132 *** *** C:\Users\breeve\OneDrive - County of San Diego\HDrive\Modeling Proje *** 09/23/24 *** AERMET - VERSION 22112 *** *** *** 12:06:15 PAGE 6 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* *** Message Summary : AERMOD Model Execution *** ----- Summary of Total Messages ------A Total of 0 Fatal Error Message(s) A Total of 3 Warning Message(s) 683 Informational Message(s) A Total of A Total of 26304 Hours Were Processed A Total of 249 Calm Hours Identified A Total of 433 Missing Hours Identified (1.65 Percent) ******* FATAL ERROR MESSAGES *******

*** NONE ***

****** WARNING MESSAGES *******

SO W320	38	PPARM: Input Parameter May Be Out-of-Range for Parameter	VS
ME W186	101	MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used	0.50
ME W187	101	MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET	

Galvez, Maria

From:	Stein, Austin C
Sent:	Wednesday, September 4, 2024 10:57 AM
То:	Reeve, Bill; Nguyen, Tony
Cc:	Swaney, Jim; Canter, Adam; Horres, Nicholas
Subject:	8382_Premium West Construction - HRA Request
Attachments:	APP008382_Calculations.xlsm; APP008382_De Minimis.xlsm

Hello,

Here is an HRA request.

The engine is located on top of the proposed apartment building. Apartment building dimensions show in plot plans.

Please have the modeler post the results in 28382 Premium West Construction

Thank you so much,

% · flキv, 抱 hnv; 抱 un¼uv- ½# ?fiૠ f∰+ £). *Æ; # £; #£; #£; ±v; nnf# Qa; ∄ vnt£# £ ·; ‰# f∰M£}} · ¥£; # £; #£)₺ fl#ij # ````, Æ 〕 # ff£″n#l ૠa; ∄ vnt£₩ % æ¨```# # ″-Ð,&¨Đ-.``# ⊠# · flŧŋ Qtnyó flla«jl£ft#