S130 - NiCrMo, Shielded Metal Arc Welding (SMAW) Welding Process Emission Factors								
ALCULATION METHOD	S							
nnual Emissions: $Ea = Ua x$								
ourly Emissions: $Eh = Uh x$								
a = Annual emissions of each	listed toxic air contaminant	per welding rod, (lbs/year)						
		ntaminant per welding rod, (lbs/hour)						
a = Annual usage of each we								
h = Maximum hourly usage of each welding rod, (lbs/hour)								
F = Emission Factor (lbs/lb r)	od)							
mission Factors:								
/ 1		(1/95): EF = Trace Metal EF (Table 1						
/ I		R (Table 12.19-1) x FCF x Ci (MSDS)						
	nformation: EF = Trace Meta	= FGR (District Default) x FCF x Ci (MSDS)					
		rict Study) x FCF x Ci (MSDS)						
		comium information: $EF = Cr$ (Total Cl	hromium in F	umes) EF x H0	CR			
OTES:								
		n control methods and efficiencies rep	orted are be a	applied within	the emission calculations.			
Fume generation rates (FGR)								
o EPA AP-42 Final Section 12.19 (1/95) Table 12.19-1 (PM10 EF) o ARB, Richard Bode: 0.01 (GMAW, TIG, MIG), 0.02 (SMAW, FCAW), 0.00005 (SAW), 0.05 (unspecified)								
	T (GMAW, TIG, MIG), 0.02 F) per District engineering di		05 (unspecifi	eu)				
	IIG), 0.2865 (SMAW, FCAW							
, , , , , , , , , , , , , , , , , , ,		,,, (anspectica)						
Trace metal emission factors are based on the following: o/AWMA Volume 59, 2009, Issue 5 (Pages 619-626) Table 2 and Table 3								
		able 2 and Table 3						
o AWMA Volume 59, 200		able 2 and Table 3						
o AWMA Volume 59, 200 o EPA AP-42 Final Section	9, Issue 5 (Pages 619-626) Ta							
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estimates Hexavalent chromium converses	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis	s (Ci) from MSDS strict engineering reviews of studies or	n welding:					
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estimates Hexavalent chromium converses	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis	s (Ci) from MSDS	1 welding:					
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estimates Hexavalent chromium converses	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis	s (Ci) from MSDS strict engineering reviews of studies or	1 welding:					
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estim Hexavalent chromium convert	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	s (Ci) from MSDS strict engineering reviews of studies or	n welding: FACTOR	(UNITS)	COMMENTS			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti- Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT NOX	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS			
o/AWMA Volume 59, 200 o/EPA AP-42 Final Section o/District engineering esti- Hexavalent chromium conver o/0.05 (GMAW, TIG, MIC POLLUTANT NOX CO	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti- Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS			
o/AWMA Volume 59, 200 o/EPA AP-42 Final Section o/District engineering esti- Hexavalent chromium conver o/0.05 (GMAW, TIG, MIC POLLUTANT NOX CO	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti- Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti- Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS Assume PM10 = TSP			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti- Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-	(UNITS)				
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estii Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX TOG VOC	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	(UNITS)				
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti- Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG VOC TSP	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified)	-		Assume PM10 = TSP			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estii Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX TOG VOC	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estii Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG VOC TSP PM10	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estii Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX TOG VOC TSP	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estii Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG VOC TSP PM10	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG VOC TSP PM10 Al	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering estii Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG VOC TSP PM10	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume			
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conver o 0.05 (GMAW, TIG, MIC POLLUTANT POLLUTANT NOX CO SOX TOG VOC TSP PM10 Al	9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dis G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (Ibs/Ib rod)	s (Ci) from MSDS strict engineering reviews of studies or AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume			

Cd

Со

Cr	4.20E-04	EPA Table 12.19-2 (1/95) AP-42	4.2	0.1 lb/1000 lbs rod	District Procedure (1) EF = Trace Metal EF		
Cr(VI)	2.31E-04	AWMA Page 623	55	%	District Procedure (*) EF = Cr EF x HCR		
Cu							
Mn	4.30E-05	EPA Table 12.19-2 (1/95) AP-42	0.43	0.1 lb/1000 lbs rod	District Procedure (1) EF = Trace Metal EF		
Ni	2.47E-04	EPA Table 12.19-2 (1/95) AP-42	2.47	0.1 lb/1000 lbs rod	District Procedure (1) EF = Trace Metal EF		
Р							
Pb							
Crystalline Silica							
V							
Zn							
IEFERENCES: PA AP-42 Chapter 12.19: https://www.epa.gov/sites/production/files/2020-11/documents/c12s19.pdf WMA: https://www.tandfonline.com/doi/abs/10.3155/1047-3289.59.5.619							

Last Updated on 07/07/2022 by A.Weller