G105 - 316, Gas Metal Arc Welding (GMAW) Welding Process Emission Factors

CALCULATION METHODS

Annual Emissions: \(Ea = U_a \times EF \times (1-e) \)

Hourly Emissions: \(Eh = U_h \times EF \times (1-e) \)

- \(Ea \) = Annual emissions of each listed toxic air contaminant per welding rod, (lbs/year)
- \(Eh \) = Maximum hourly emissions of each listed toxic air contaminant per welding rod, (lbs/hour)
- \(U_a \) = Annual usage of each welding rod, (lbs/year)
- \(U_h \) = Maximum hourly usage of each welding rod, (lbs/hour)
- \(EF \) = Emission Factor (lbs/lb rod)

Emission Factors:

1. Complete AP-42 information from Final Section 12.19 (1/95): \(EF = \text{Trace Metal EF} \) (Table 12.19-2)
2. Incomplete AP-42 Final Section 12.19 (1/95): \(EF = \text{FGR (Table 12.19-1) x FCF x Ci (MSDS)} \)
3. No AP-42 information but known welding process: \(EF = \text{FGR (District Default) x FCF x Ci (MSDS)} \)
4. District Study or AWMA information: \(EF = \text{Trace Metal EF} \)
5. Incomplete District Study information: \(EF = \text{FGR (District Study) x FCF x Ci (MSDS)} \)

\((*) \) Incomplete AP-42, District, or AWMA Hexavalent Chromium information: \(EF = \text{Cr (Total Chromium in Fumes) EF x HCR} \)

NOTES:

- Emission factors assume "uncontrolled" releases. Emission control methods and efficiencies reported are be applied within the emission calculations.
- Fume generation rates (FGR) are based on the following:
 - EPA AP-42 Final Section 12.19 (1/95) Table 12.19-1 (PM10 EF)
 - ARB, Richard Bode: 0.01 (GMAW, TIG, MIG), 0.02 (SMAW, FCAW), 0.00005 (SAW), 0.05 (unspecified)
- Fume Correction Factors (FCF) per District engineering discussions with Industry:
 - 0.5464 (GMAW, TIG, MIG), 0.2865 (SMAW, FCAW, SAW), 1.0 (unspecified)
- Trace metal emission factors are based on the following:
 - AWMA Volume 59, 2009, Issue 5 (Pages 619-626) Table 2 and Table 3
 - EPA AP-42 Final Section 12.19 (1/95) Table 12.19-2
 - District engineering estimates using rod compositions (Ci) from MSDS
- Hexavalent chromium conversion rates (HCR) are per District engineering reviews of studies on welding:
 - 0.05 (GMAW, TIG, MIG), 0.55 (SMAW), 0.0005 (SAW), 0.10 (FCAW, unspecified)

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>DISTRICT EMISSION FACTORS (lbs/lb rod)</th>
<th>REFERENCE DOCUMENT</th>
<th>FACTOR</th>
<th>(UNITS)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSP</td>
<td>3.20E-03</td>
<td></td>
<td></td>
<td></td>
<td>Assume PM10 = TSP</td>
</tr>
<tr>
<td>PM10</td>
<td>3.20E-03</td>
<td>EPA Table 12.19-1 (1/95) AP-42</td>
<td>3.2</td>
<td>lb/1000 lbs rod</td>
<td>Assume PM10 = Fume Generation Rate (FGR)</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Concentration</td>
<td>Reference</td>
<td>EF Factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>7.72E-03</td>
<td>AWMA Table 2</td>
<td>7.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>2.84E-05</td>
<td>AWMA Table 2</td>
<td>0.0284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr(VI)</td>
<td>2.45</td>
<td>EPA Table 12.19-2 (1/95) AP-42</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>2.45E-04</td>
<td>EPA Table 12.19-2 (1/95) AP-42</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>2.45E-04</td>
<td>EPA Table 12.19-2 (1/95) AP-42</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>2.26E-04</td>
<td>EPA Table 12.19-2 (1/95) AP-42</td>
<td>2.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalline Silica</td>
<td>7.72E-03</td>
<td>AWMA Table 2</td>
<td>7.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2.45</td>
<td>EPA Table 12.19-2 (1/95) AP-42</td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>2.84E-05</td>
<td>AWMA Table 2</td>
<td>0.0284</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES:
- AWMA: https://www.tandfonline.com/doi/abs/10.3155/1047-3289.59.5.619

Last Updated on 07/07/2022 by A.Weller