F120 - INCO 62, Flux Core Arc Welding (FCAW) Welding Process Emission Factors

CALCULATION METHODS								
Annual Emissions: $Ea = Ua \times EF (lbs/lb rod) \times (1-e)$								
Hourly Emissions: $Eh = Uh \times EF (lbs/lb rod) \times (1-e)$								
Ea = Annual emissions of each listed toxic air contaminant per welding rod, (lbs/year) Eh = Maximum hourly emissions of each listed toxic air contaminant per welding rod, (lbs/hour) Ua = Annual usage of each welding rod, (lbs/year) Uh = Maximum hourly usage of each welding rod, (lbs/hour) EF = Emission Factor (lbs/lb rod)								
 Emission Factors: (1) Complete AP-42 information from Final Section 12.19 (1/95): EF = Trace Metal EF (Table 12.19-2) (2) Incomplete AP-42 Final Section 12.19 (1/95): EF = FGR (Table 12.19-1) x FCF x Ci (MSDS) (3) No AP-42 information but known welding process: EF = FGR (District Default) x FCF x Ci (MSDS) (4) District Study or AWMA information: EF = Trace Metal EF (5) Incomplete District Study information: EF = FGR (District Study) x FCF x Ci (MSDS) (*) Incomplete AP-42, District, or AWMA Hexavalent Chromium information: EF = Cr (Total Chromium in Fumes) EF x HCR 								
 NOTES: Emission factors assume "uncontrolled" releases. Emission control methods and efficiencies reported are be applied within the emission calculations. Fume generation rates (FGR) are based on the following: o EPA AP-42 Final Section 12.19 (1/95) Table 12.19-1 (PM10 EF) o TARB, Richard Bode: 0.01 (GMAW, TIG, MIG), 0.02 (SMAW, FCAW), 0.00005 (SAW), 0.05 (unspecified) Fume Correction Factors (FCF) per District engineering discussions with Industry: o Tacce metal emission factors are based on the following: o Trace metal emission factors are based on the following: o Tack AP-42 Final Section 12.19 (1/95) Table 12.19-2 o Tace metal emission factors are based on the following: o Tacce metal emission factors 12.19 (1/95) Table 12.19-2 o District engineering estimates using rod compositions (Ci) from MSDS Hexavalent chromium conversion rates (HCR) are per District engineering reviews of studies on welding: o To S (GMAW, TIG, MIG), 0.55 (SMAW), 0.0005 (SAW), 0.10 (FCAW, unspecified) 								
POLLUTANT	DISTRICT EMISSION FACTORS (lbs/lb rod)	REFERENCE DOCUMENT	FACTOR	(UNITS)	COMMENTS			
NOX								
CO								
SOX								
TOG								
VOC								
TSP	2.00E-02				Assume PM10 = TSP			
PM10	2.00E-02	CARB Welding Recommendations (1993)	0.02	lbs/lb rod	Assume PM10 = Fume Generation Rate (FGR)			
AI								
AI2O3								

Ве					
Cd					
Со					
Cr	9.74E-04	District Welding Study SDS - WA Alloy Ni-62 (NIiCrFe-5)	17	wt%	District Procedure (3) EF = FGR x FCF x Ci
Cr(VI)	9.74E-05	AWMA Page 623	10	%	District Procedure (*) EF = Cr EF x HCR
Cu	2.87E-05	District Welding Study SDS - WA Alloy Ni-62 (NIiCrFe-5)	0.5	wt%	District Procedure (3) EF = FGR x FCF x Ci
Mn	5.73E-05	District Welding Study SDS - WA Alloy Ni-62 (NIiCrFe-5)	1	wt%	District Procedure (3) EF = FGR x FCF x Ci
Ni	4.01E-03	District Welding Study SDS - WA Alloy Ni-62 (NIiCrFe-5)	70	wt%	District Procedure (3) EF = FGR x FCF x Ci
Р	1.64E-06	District Welding Study SDS - WA Alloy Ni-62 (NIiCrFe-5)	0.03	wt%	District Procedure (3) EF = FGR x FCF x Ci
Pb					
Crystalline Silica					
v					
Zn					
REFERENCES: EPA AP-42 Chapter 12.19: https: AWMA: https://www.tandfonlir		oduction/files/2020-11/documents/c12 1047-3289.59.5.619	s19.pdf		

Last Updated on 07/07/2022 by A.Weller