F102 - 80S, Flux Core Arc Welding (FCAW) Welding Process Emission Factors

<u>1102 - 005, 1102 Core Are Welding (1 CAW) Welding 1 rocess Emission 1 actors</u>								
CALCULATION METHODS								
Annual Emissions: Ea = Ua x EF (lbs/lb rod) x (1-e)								
Hourly Emissions: $Eh = Uh \ x \ EF \ (lbs/lb \ rod) \ x \ (1-e)$								
Ea = Annual emissions of each listed toxic air contaminant per welding rod, (lbs/year) Eh = Maximum hourly emissions of each listed toxic air contaminant per welding rod, (lbs/hour) Ua = Annual usage of each welding rod, (lbs/year) Uh = Maximum hourly usage of each welding rod, (lbs/hour) EF = Emission Factor (lbs/lb rod)								
 Emission Factors: (1) Complete AP-42 information from Final Section 12.19 (1/95): EF = Trace Metal EF (Table 12.19-2) (2) Incomplete AP-42 Final Section 12.19 (1/95): EF = FGR (Table 12.19-1) x FCF x Ci (MSDS) (3) No AP-42 information but known welding process: EF = FGR (District Default) x FCF x Ci (MSDS) (4) District Study or AWMA information: EF = Trace Metal EF (5) Incomplete District Study information: EF = FGR (District Study) x FCF x Ci (MSDS) (*) Incomplete AP-42, District, or AWMA Hexavalent Chromium information: EF = Cr (Total Chromium in Fumes) EF x HCR 								
 NOTES: Emission factors assume "uncontrolled" releases. Emission control methods and efficiencies reported are be applied within the emission calculations. Fume generation rates (FGR) are based on the following: otEPA AP-42 Final Section 12.19 (1/95) Table 12.19-1 (PM10 EF) otARB, Richard Bode: 0.01 (GMAW, TIG, MIG), 0.02 (SMAW, FCAW), 0.00005 (SAW), 0.05 (unspecified) Fume Correction Factors (FCF) per District engineering discussions with Industry: ot0.5464 (GMAW, TIG, MIG), 0.2865 (SMAW, FCAW, SAW), 1.0 (unspecified) Trace metal emission factors are based on the following: otAWMA Volume 59, 2009, Issue 5 (Pages 619-626) Table 2 and Table 3 otEPA AP-42 Final Section 12.19 (1/95) Table 12.19-2 otDistrict engineering estimates using rod compositions (Ci) from MSDS Hexavalent chromium conversion rates (HCR) are per District engineering reviews of studies on welding: ot0.05 (GMAW, TIG, MIG), 0.55 (SMAW), 0.0005 (SAW), 0.10 (FCAW, unspecified) 								
POLLUTANT	DISTRICT EMISSION FACTORS (lbs/lb rod)	REFERENCE DOCUMENT	FACTOR	(UNITS)	COMMENTS			
NOX								
СО								
SOX								
TOG								
VOC								
TSP	2.00E-02				Assume PM10 = TSP			
PM10	2.00E-02	CARB Welding Recommendations (1993)	0.02	lbs/lb rod	Assume PM10 = Fume Generation Rate (FGR)			
AI								
AI2O3								

Ве						
De						
Cd						
Со						
Cr						
-						
C =(1)(1)						
Cr(VI)						
	5.73E-06	District Welding Study SDS - WA Alloy 80S-D2	0.1	wt%	District Procedure (3) EF = FGR x FCF x Ci	
Cu		WA Alloy 805-D2			EF - FOR A FCF A CI	
	1.12E-04	District Welding Study SDS -	1.95	wt%	District Procedure (3)	
Mn	1.122 01	WA Alloy 80S-D2	1.95	were	$EF = FGR \times FCF \times Ci$	
		District Welding Study SDS -	0.00	.0 (District Procedure (3)	
Ni	1.15E-06	WA Alloy 80S-D2	0.02	wt%	$EF = FGR \ x \ FCF \ x \ Ci$	
		District Welding Study SDS -			District Procedure (3)	
Р	6.56E-07	WA Alloy 80S-D2	0.012	wt%	$EF = FGR \times FCF \times Ci$	
P						
Pb						
Crystalline Silica						
v						
Zn						
ZII REFERENCES:						
PA AP-42 Chapter 12.19: https://www.epa.gov/sites/production/files/2020-11/documents/c12s19.pdf						
WMA: https://www.tandfonlin			-			

Last Updated on 07/07/2022 by A.Weller