CALCULATION METHOD	<u>s</u>				
Annual Emissions: $Ea = Ua x$ Hourly Emissions: $Eh = Uh x$	EF (lbs/lb rod) x (1-e)				
th = Maximum hourly emission Ja = Annual usage of each we	elding rod, (lbs/year) of each welding rod, (lbs/hour	ntaminant per welding rod, (lbs/hour)			
2) Incomplete AP-42 Final Se 3) No AP-42 information but 4) District Study or AWMA is 5) Incomplete District Study i	ection 12.19 (1/95): EF = FGR known welding process: EF = nformation: EF = Trace Metal information: EF = FGR (Distr	(1/95): EF = Trace Metal EF (Table 1 R (Table 12.19-1) x FCF x Ci (MSDS = FGR (District Default) x FCF x Ci (1 EF rict Study) x FCF x Ci (MSDS) pmium information: EF = Cr (Total C) MSDS)	umes) EF x HC	CR
o ARB, Richard Bode: 0.0	CF) per District engineering di	(SMAW, FCAW), 0.00005 (SAW), 0. iscussions with Industry:	05 (unspecifie	ed)	
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions	able 2 and Table 3 s (Ci) from MSDS	- welding		
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist	able 2 and Table 3	n welding: FACTOR	(UNITS)	COMMENTS
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve o 0.05 (GMAW, TIG, MIC	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist G), 0.55 (SMAW), 0.0005 (SA	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of W), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve o 0.05 (GMAW, TIG, MIC POLLUTANT NOX	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist G), 0.55 (SMAW), 0.0005 (SA	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of W), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve o 0.05 (GMAW, TIG, MIC	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist G), 0.55 (SMAW), 0.0005 (SA	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of W), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conver o 0.0.05 (GMAW, TIG, MIC POLLUTANT NOX CO	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist G), 0.55 (SMAW), 0.0005 (SA	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of W), 0.10 (FCAW, unspecified)	-	(UNITS)	COMMENTS
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve o 0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist G), 0.55 (SMAW), 0.0005 (SA	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of W), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve o 0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX TOG	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist G), 0.55 (SMAW), 0.0005 (SA	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of W), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS Assume PM10 = TSP
o AWMA Volume 59, 200 o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve ol0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX TOG VOC	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Disl G), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod)	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of W), 0.10 (FCAW, unspecified)		(UNITS)	Assume PM10 = TSP Assume PM10 = Fume
o EPA AP-42 Final Section o District engineering esti Hexavalent chromium conve o 0.05 (GMAW, TIG, MIC POLLUTANT NOX CO SOX TOG VOC TSP	are based on the following: 9, Issue 5 (Pages 619-626) Ta n 12.19 (1/95) Table 12.19-2 mates using rod compositions rsion rates (HCR) are per Dist 6), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 5.51E-01	able 2 and Table 3 s (Ci) from MSDS trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR		

Ве

Cd

Со					
	5.14E-05	District FCAW Welding Study	0.0515	lb/1000 lbs rod	District Procedure (4) EF = Cr/Cr+6 EF
Cr					
Cr(VI)	3.87E-05	District FCAW Welding Study	0.0387	lb/1000 lbs rod	District Procedure (4) EF = Cr/Cr+6 EF
Cu					
Mn	1.42E-02	District FCAW Welding Study	14.2	lb/1000 lbs rod	District Procedure (4) EF = Mn EF
Ni	3.15E-02	District FCAW Welding Study	31.5	lb/1000 lbs rod	District Procedure (4) EF = Ni EF
Р					
Pb	2.88E-04	District FCAW Welding Study	0.288	lb/1000 lbs rod	District Procedure (4) EF = Pb EF
Crystalline Silica					
v					
Zn					
EFERENCES:	1			1 1	
		oduction/files/2020-11/documents/c12	2s19.pdf		
NMA: https://www.tandfonli	ne.com/doi/abs/10.3155	/1047-3289.59.5.619			
AWMA: https://www.tandfonli		/1047-3289.59.5.619			

Last Updated on 07/07/2022 by A.Weller