F111 - 4130, Flux Core Arc Welding (FCAW) Welding Process Emission Factors

	ł	e weiding (Pertwy weiding	1100035	111551011-1-4	
CALCULATION METHODS					
Annual Emissions: Ea = Ua x E					
Hourly Emissions: $Eh = Uh \times E$	F (lbs/lb rod) x (1-e)				
Ea = Annual emissions of each Eh = Maximum hourly emission Ua = Annual usage of each weld Uh = Maximum hourly usage of EF = Emission Factor (lbs/lb ro	ns of each listed toxic air con ding rod, (lbs/year) f each welding rod, (lbs/hou	ntaminant per welding rod, (lbs/hour)			
 (2) Incomplete AP-42 Final Sec (3) No AP-42 information but k (4) District Study or AWMA in (5) Incomplete District Study in 	tion 12.19 (1/95): EF = FG mown welding process: EF = formation: EF = Trace Meta formation: EF = FGR (Distr) MSDS)	umes) EF x H	ICR
 Fume generation rates (FGR) a o EPA AP-42 Final Section o ARB, Richard Bode: 0.01 Fume Correction Factors (FCF o 0.5464 (GMAW, TIG, MI Trace metal emission factors a o AWMA Volume 59, 2009 o EPA AP-42 Final Section o District engineering estime Hexavalent chromium converses 	are based on the following: 12.19 (1/95) Table 12.19-1 (GMAW, TIG, MIG), 0.02 F) per District engineering di IG), 0.2865 (SMAW, FCAW are based on the following: I, Issue 5 (Pages 619-626) Ta 12.19 (1/95) Table 12.19-2 nates using rod compositions sion rates (HCR) are per Dis	(SMAW, FCAW), 0.00005 (SAW), 0.0 iscussions with Industry: Y, SAW), 1.0 (unspecified) able 2 and Table 3	05 (unspecifie		the emission calculations.
POLLUTANT	DISTRICT EMISSION FACTORS (lbs/lb rod)	REFERENCE DOCUMENT	FACTOR	(UNITS)	COMMENTS
NOX					
СО					
SOX					
TOG					
VOC					
TSP	2.00E-02				Assume PM10 = TSP
PM10	2.00E-02	CARB Welding Recommendations (1993)	0.02	lbs/lb rod	Assume PM10 = Fume Generation Rate (FGR)
AI					

Ве					
Cd					
Со					
Cr	6.30E-05	District Welding Study SDS - USW Turbaloy 4130	1.1	wt%	District Procedure (3) EF = FGR x FCF x Ci
Cr(VI)	6.30E-06	AWMA Page 623	10	wt%	District Procedure (*) EF = Cr EF x HCR
Cu	5.73E-06	District Welding Study SDS - USW Turbaloy 4130	0.1	wt%	District Procedure (3) EF = FGR x FCF x Ci
Mn	3.44E-05	District Welding Study SDS - USW Turbaloy 4130	0.6	wt%	District Procedure (3) EF = FGR x FCF x Ci
Ni	1.43E-05	District Welding Study SDS - USW Turbaloy 4130	0.25	wt%	District Procedure (3) EF = FGR x FCF x Ci
Р	4.37E-07	District Welding Study SDS - USW Turbaloy 4130	0.008	wt%	District Procedure (3) EF = FGR x FCF x Ci
Pb					
Crystalline Silica					
v	3.44E-06	District Welding Study SDS - USW Turbaloy 4130	0.06	wt%	District Procedure (3) EF = FGR x FCF x Ci
Zn					
ERENCES:					
AP-42 Chapter 12.19: https:// MA: https://www.tandfonline		oduction/files/2020-11/documents/c12 /1047-3289.59.5.619	2519.pdf		

Last Updated on 07/07/2022 by A.Weller