F105 - 308, Flux Core Arc Welding (FCAW) Welding Process Emission Factors

	F105 - 308, Flux Core Arc Welding (FCAW) Welding Process Emission Factors										
CALCULATION METHODS											
Annual Emissions: Ea = Ua x I	EF (lbs/lb rod) x (1-e)										
Hourly Emissions: $Eh = Uh x I$	EF (lbs/lb rod) x (1-e)										
Ea = Annual emissions of each											
	Eh = Maximum hourly emissions of each listed toxic air contaminant per welding rod, (lbs/hour)										
	Ua = Annual usage of each welding rod, (lbs/year) Uh = Maximum hourly usage of each welding rod, (lbs/hour)										
EF = Emission Factor (lbs/lb rod)											
Emission Factors:											
	on from Final Section 12.19 ((1/95): EF = Trace Metal EF (Table 1	2.19-2)								
· · ·		R (Table 12.19-1) x FCF x Ci (MSDS)	,								
(3) No AP-42 information but(4) District Study or AWMA in		= FGR (District Default) x FCF x Ci (MSDS)								
(5) Incomplete District Study in											
(*) Incomplete AP-42, District	, or AWMA Hexavalent Chro	omium information: EF = Cr (Total C	hromium in F	fumes) EF x HC	CR						
NOTES:											
Emission factors assume "une		n control methods and efficiencies rep	ported are be	applied within t	he emission calculations.						
• Fune generation rates (FGR) are based on the following:											
o EPA AP-42 Final Section 12.19 (1/95) Table 12.19-1 (PM10 EF) o ARB, Richard Bode: 0.01 (GMAW, TIG, MIG), 0.02 (SMAW, FCAW), 0.00005 (SAW), 0.05 (unspecified)											
• Fume Correction Factors (FCF) per District engineering discussions with Industry:											
	o 10.5464 (GMAW, TIG, MIG), 0.2865 (SMAW, FCAW, SAW), 1.0 (unspecified)										
Trace metal emission factors OAWMA Volume 59, 2009		able 2 and Table 3									
o AWMA Volume 59, 2009, Issue 5 (Pages 619-626) Table 2 and Table 3 o EPA AP-42 Final Section 12.19 (1/95) Table 12.19-2											
o EPA AP-42 Final Section	1 12.19 (1/95) Table 12.19-2		o District engineering estimates using rod compositions (Ci) from MSDS								
o District engineering estin	mates using rod compositions										
o District engineering estin • Hexavalent chromium conver	mates using rod compositions rsion rates (HCR) are per Dis	trict engineering reviews of studies or	n welding:								
o District engineering estin • Hexavalent chromium conver	mates using rod compositions rsion rates (HCR) are per Dis		n welding:								
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG	mates using rod compositions rsion rates (HCR) are per Dis	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)			COMMENTS						
o District engineering estin • Hexavalent chromium conver	mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA	trict engineering reviews of studies or	FACTOR	(UNITS)	COMMENTS						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG	mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO	mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS						
o District engineering estir • Hexavalent chromium conver o(0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX	mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS						
o District engineering estin • Hexavalent chromium conver o(0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG	mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS						
o District engineering estir • Hexavalent chromium conver o(0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX	mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC	mates using rod compositions rsion rates (HCR) are per Dis i), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		(UNITS)	COMMENTS Assume PM10 = TSP						
o District engineering estin • Hexavalent chromium conver o(0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG	mates using rod compositions rsion rates (HCR) are per Dis b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod)	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		(UNITS)	Assume PM10 = TSP						
o District engineering estin • Hexavalent chromium conver o(0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC	mates using rod compositions rsion rates (HCR) are per Dis b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod)	trict engineering reviews of studies on AW), 0.10 (FCAW, unspecified)		lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume						
o District engineering estin • Hexavalent chromium conver o(0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR		Assume PM10 = TSP						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP PM10	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT EPA Table 12.19-1 (1/95) AP-42	FACTOR	lb/1000 lbs rod	Assume PM10 = TSP Assume PM10 = Fume Generation Rate (FGR)						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP PM10 Al	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT	FACTOR	lb/1000 lbs	Assume PM10 = TSP Assume PM10 = Fume						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP PM10	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT EPA Table 12.19-1 (1/95) AP-42 Historical Welding SDS -	FACTOR	lb/1000 lbs rod	Assume PM10 = TSP Assume PM10 = Fume Generation Rate (FGR) District Procedure (2)						
o'District engineering estin • Hexavalent chromium conver o'0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP PM10 Al Al2O3	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT EPA Table 12.19-1 (1/95) AP-42 Historical Welding SDS -	FACTOR	lb/1000 lbs rod	Assume PM10 = TSP Assume PM10 = Fume Generation Rate (FGR) District Procedure (2)						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP PM10 Al	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT EPA Table 12.19-1 (1/95) AP-42 Historical Welding SDS -	FACTOR	lb/1000 lbs rod	Assume PM10 = TSP Assume PM10 = Fume Generation Rate (FGR) District Procedure (2)						
o District engineering estin • Hexavalent chromium conver o 0.05 (GMAW, TIG, MIG POLLUTANT NOX CO SOX TOG VOC TSP PM10 Al Al2O3	mates using rod compositions rsion rates (HCR) are per Dis rsion rates (HCR) are per Dis (b), 0.55 (SMAW), 0.0005 (SA DISTRICT EMISSION FACTORS (lbs/lb rod) 9.10E-03 9.10E-03	trict engineering reviews of studies of AW), 0.10 (FCAW, unspecified) REFERENCE DOCUMENT EPA Table 12.19-1 (1/95) AP-42 Historical Welding SDS -	FACTOR	lb/1000 lbs rod	Assume PM10 = TSP Assume PM10 = Fume Generation Rate (FGR) District Procedure (2)						

Со					
Cr.	7.82E-04	Historical Welding SDS - Harris 308LT	30	%	District Procedure (2) EF = FGR x FCF x Ci
Cr					
Cr(VI)	7.82E-05	AWMA Page 623	10	%	District Procedure (*) EF = Cr EF x HCR
- ()					
Cu					
Mn	1.04E-04	Historical Welding SDS - Harris 308LT	4	%	District Procedure (2) EF = FGR x FCF x Ci
Ni	3.91E-04	Historical Welding SDS - Harris 308LT	15	%	District Procedure (2) EF = FGR x FCF x Ci
Р					
Pb					
Crystalline Silica					
v					
Zn					
EFERENCES:		luction/files/2020-11/documents/c12 047-3289.59.5.619	2s19.pdf		

Last Updated on 07/07/2022 by A.Weller