M02-M05 - METAL DEPOSITION, PLASMA SPRAY, SITE SPECIFIC TEST RESULTS, 43FNS WITH WATER CURTAINS, CHEMTRONICS

CALCULATION METHODS

Annual Emissions: Ea = Ua x EF (lbs/lb sprayed) x Ci Hourly Emissions: Eh = Uh x EF (lbs/lb sprayed) x Ci

Ea = Annual emissions of each listed toxic air contaminant per material, (lbs/year)

Eh = Maximum hourly emissions of each listed toxic air contaminant per material, (lbs/hour)

Ua = Annual usage of each material sprayed, (lbs/year)

Uh = Maximum hourly usage of each maerial sprayed, (lbs/hour)

EF = Emission Factor (lbs/lb sprayed)

Ci = Toxic air contaminant specific concentration (weight percent)

NOTES:

- PM10 Emission Factors developed from Sum of Ni & Cr Source Test Results:
 - •Chemtronics: 1994 Source Test Material Metco 43FNS compostion: Cr 20% and Ni 80% = 100%.
- All emissions for this calculation procedure are assumed to be Ducted.
- Annual (Ua) and maximum hourly (Uh) throughputs must be individually reported for each material sprayed.
- Site and material specific emission factors should be used where available.
- Combustion related emissions of NOx, CO, SOx, PIC's, etc. are assumed to be negligible as no emissions information currently exists.
- For Emissions Inventory:
 - •Trace metal composition is assumed to be equivalent to the PM10 fraction.
 - •Base factors on actual Source Test (ST) data if available.
 - •Method for estimating annual and max hourly emissions will use Emission Factor PM10 EF (Lb / Lb overall sprayed).

POLLUTANT	DISTRICT EMISSION FACTORS (lbs emitted / lb Overall sprayed)	EMISSION FACTORS (lbs individual metal released / lb individual metal sprayed)	REFERENCE DOCUMENT	TEST LOCATION	(UNITS)	COMMENTS
NOX						
СО						
SOX						
TOG						
VOC						
TSP	3.35E-02	5.95E-02		CHEMTRONI CS	lbs/lb material sprayed	Assume PM10 = TSP. Base this estimate on overall usage (lbs of material).
PM10	3.35E-02	5.95E-02		CHEMTRONI CS	lbs/lb material sprayed	Base this estimate on overall usage (lbs of material).
Total Chromium	4.72E-03	2.36E-02	Site Specific test result	CHEMTRONI CS		
Chromium Hexavalent	5.67E-04	2.83E-03	Site Specific test result	CHEMTRONI CS		Hexavalent chromium conversion rates (HCR) based on Chemtronics 1994 Source Test = Cr6+/Total Cr = $5.67E$ - $04/4.72E$ - $03 \approx 12\%$. EF lbs emitted / lb metal in = lb Hex. Cr emitted/lb Total Cr sprayed. Ci = Total Cr Ci x HCR.

Chromium NonHexavalent	4.16E-03	2.08E-02	Site Specific test result	CHEMTRONI CS	NonHexavalent chromium conversion rates based on Chemtronics 1994 Source Test = 1-HCR = 1-(5.67E-04/4.72E-03) ≈ 88%. Ci = Total Cr Ci x (100% - HCR).
Nickel	2.87E-02	3.59E-02	Site Specific test result	CHEMTRONI CS	
* Other Listed Metals	3.35E-02	5.95E-02	Sum of Ni & Cr test results	CHEMTRONI CS	Assume other metals released at a rate equal TSP/PM10 EF.

Last Updated on 10/27/2025 By H. Fritschen