C02 - CONCRETE BATCH PLANT, CEMENT TREATED BASE (CTB) OPERATION, SECTION 11.12 AP-42 (1/95), W/BAGHOUSE CONTROLS

CALCULATION METHODS

Fugitive emissions:

Ea = Ua (tons/yr) x EF (lbs TSP/ ton product) x Ci (lb/lb TSP) x (1-e)

 $Eh = Uh (tons/hr) \times EF (lbs TSP/ton product) \times Ci (lb/lb TSP) \times (1-e)$

Ducted emissions:

Ea = Flow Rate (cfm) x 60 (min/hr) x Hours per day (hr/day) x Days per year (days/year) x 0.008 (grains/ft3) / 7000 (grains/lb) x Ci (lb/lb TSP)

Eh = Flow Rate (cfm) x 60 (min/hr) x 0.008 (grains/ft3) / 7000 (grains/lb) x Ci (lb/lb TSP)

Notes:

- Ducted TSP emission factor (weigh hopper & mixer) = 0.02 lbs/ton. Fugitive TSP emission factor (truck loading) = 0.02 lbs/ton.
- Ducted emissions are assumed to be released at a particulate rate of 0.008 grains/ft3. No additional capture or control efficiencies should be applied.
- TSP emission factors are based on EPA data in Section 11.12 of AP-42 (1/95).
- TSP emission factors represent controlled releases (i.e.; after baghouse).
- Trace metal emission factors are based on sample analyses submitted to the District for AB2588 purposes (~1996).

POLLUTANT	DISTRICT EMISSION FACTORS (lbs/lb TSP)	REFERENCE DOCUMENT	Default Compositi on	(UNITS)	COMMENTS
NOX					
CO					
SOX					
TOG					
ROG					
TSP	1.00	AP-42, 1/95, Sect 11.12, Table 11.12-2	1.00	lbs/lb TSP	TSP emission factors = 0.02 (weigh hopper) and 0.02 (truck loading).
PM10	0.92	ARB PM10 Report (12/87)	0.92	lbs/lb TSP	ARB report indicates 92% of TSP is PM10 or less.
ALUMINUM	0.011960	Based on local sample analyses	13000	PPMW	Based on AWR Technical Report 96-07 (7/96)
ARSENIC	0.000014	Based on local sample analyses	15	PPMW	Based on AWR Technical Report 96-07 (7/96)
BARIUM	0.000001	Based on local sample analyses	1	PPMW	Based on AWR Technical Report 96-07 (7/96)
CADMIUM	0.000001	Based on local sample analyses	1	PPMW	Based on AWR Technical Report 96-07 (7/96)

POLLUTANT	DISTRICT EMISSION FACTORS (lbs/lb TSP)	REFERENCE DOCUMENT	Default Compositi on	(UNITS)	COMMENTS
CHROMIUM HEXAVALENT	0.000002	Based on local sample analyses	2	PPMW	Based on AWR Technical Report 96-07 (7/96)
CHROMIUM NONHEXAVALENT	0.000046	Based on local sample analyses	50	PPMW	Based on AWR Technical Report 96-07 (7/96)
COPPER	0.000042	Based on local sample analyses	46	PPMW	Based on AWR Technical Report 96-07 (7/96)
LEAD	0.000030	Based on local sample analyses	33	PPMW	Based on AWR Technical Report 96-07 (7/96)
MANGANESE	0.000386	Based on local sample analyses	420	PPMW	Based on AWR Technical Report 96-07 (7/96)
MERCURY		Based on local sample analyses		PPMW	Based on AWR Technical Report 96-07 (7/96)
NICKEL	0.000017	Based on local sample analyses	18	PPMW	Based on AWR Technical Report 96-07 (7/96)
SELENIUM	0.000001	Based on local sample analyses	1	PPMW	Based on AWR Technical Report 96-07 (7/96)
SILICA, CRYSTALLINE	0.092000	Based on local sample analyses	100000	PPMW	Based on AWR Technical Report 96-07 (7/96)
ZINC	0.000129	Based on local sample analyses	140	PPMW	Based on AWR Technical Report 96-07 (7/96)

Last Updated on 8/25/1999 By D. Byrnes